RESUMEN
BACKGROUND: Bacillus cereus is implicated in severe foodborne infection in humans. This study intended to assess the occurrence, groEL gene sequencing, biofilm production, and resistance profiles of emerged multidrug resistant (MDR) B. cereus in meat and meat product samples. Moreover, this work highlights the virulence and toxigenic genes (hblABCD complex, nheABC complex, cytK, ces, and pc-plc) and antimicrobial resistance genes (bla1, tetA, bla2, tetB, and ermA). METHODS: Consequently, 200 samples (sausage, minced meat, luncheon, beef meat, and liver; n = 40 for each) were indiscriminately collected from commercial supermarkets in Port Said Province, Egypt, from March to May 2021. Subsequently, food samples were bacteriologically examined. The obtained isolates were tested for groEL gene sequence analysis, antibiotic susceptibility, biofilm production, and PCR screening of toxigenic and resistance genes. RESULTS: The overall prevalence of B. cereus among the inspected food samples was 21%, where the highest predominance was detected in minced meat (42.5%), followed by beef meat (30%). The phylogenetic analysis of the groEL gene exposed that the examined B. cereus strain disclosed a notable genetic identity with other strains from the USA and China. Moreover, the obtained B. cereus strains revealed ß-hemolytic activity, and 88.1% of the recovered strains tested positive for biofilm production. PCR evidenced that the obtained B. cereus strains usually inherited the nhe complex genes (nheA and nheC: 100%, and nheB: 83.3%), followed by cytK (76.2%), hbl complex (hblC and hblD: 59.5%, hblB: 16.6%, and hblA: 11.9%), ces (54.7%), and pc-plc (30.9%) virulence genes. Likewise, 42.9% of the examined B. cereus strains were MDR to six antimicrobial classes and encoded bla1, bla2, ermA, and tetA genes. CONCLUSION: In summary, this study highlights the presence of MDR B. cereus in meat and meat products, posing a significant public health risk. The contamination by B. cereus is common in minced meat and beef meat. The molecular assay is a reliable fundamental tool for screening emerging MDR B. cereus strains in meat and meat products.
Asunto(s)
Microbiología de Alimentos , Productos de la Carne , Humanos , Animales , Bovinos , Enterotoxinas/genética , Bacillus cereus , Antibacterianos/farmacología , Filogenia , Farmacorresistencia Bacteriana/genética , CarneRESUMEN
Avian salmonellosis is concomitant with high financial crises in the poultry industry as well as food-borne illness in man. The present study is designed to investigate the emergence of Salmonella Enteritidis and Salmonella Typhimurium in diseased broilers, resistance profiles, and monitoring virulence and antibiotic resistance genes. Consequently, 450 samples (cloacal swabs, liver, and spleen) were collected from 150 diseased birds from different farms in Giza Governorate, Egypt. Subsequently, the bacteriological examination was done. Afterward, the obtained Salmonella isolates were tested for serogrouping, antibiogram, PCR monitoring of virulence (invA, stn, hilA, and pefA), and antimicrobial resistance genes (blaTEM, blaCTX-M, blaNDM, ermA, sul1, tetA, and aadA1). The total prevalence of Salmonella in the examined diseased broilers was 9.3%, and the highest prevalence was noticed in cloacal swabs. Among the recovered Salmonella isolates (n = 35), 20 serovars were recognized as S. Enteritidis and 15 serovars were identified as S. Typhimurium. Almost 60% of the retrieved S. Enteritidis serovars were extensively drug-resistant (XDR) to seven antimicrobial classes and inherited sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Likewise, 25% of the recovered S. Enteritidis serovars were multidrug-resistant (MDR) to six classes and have sul1, blaTEM, tetA, blaCTX-M, and ereA resistance genes. Also, 66.7% of the retrieved S. Typhimurium serovars were XDR to seven classes and have sul1, blaTEM, tetA, blaCTX-M, ereA, and aadA1 genes. Succinctly, this report underlined the reemergence of XDR S. Typhimurium and S. Enteritidis in broiler chickens. Meropenem and norfloxacin exposed a hopeful antimicrobial activity toward the re-emerging XDR S. Typhimurium and S. Enteritidis in broilers. Moreover, the recurrence of these XDR Salmonella strains poses a potential public health threat.