Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 250: 118483, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373553

RESUMEN

Reports on Groundwater level variations and quality changes have been a critical issue, especially in arid regions. An attempt has been made in this study to determine the surface manifestations of groundwater variations through processing imageries for determining the changes in land use, Normalized Differential Building Index (NDBI), Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), along with Groundwater level (GWL) and Electrical conductivity (EC). Decadal variation between these parameters for 2013 and 2023 shows that the average water level had increased by 1.03amsl, while the EC values of groundwater decreased by 418 µS/cm. The decrease in EC values indicates freshwater recharge, promoting natural vegetation, thus reducing the LST values by 3.28 °C. In addition, urban landscaping and relatively lesser emissivity from built-up surfaces than the sandy desert have further reduced the LST. The interrelationship of the parameters indicates that an increase in LST correlates with an increase in NDBI and with less significant changes in NDVI. The lowering of the LST along the coastal regions was inferred to be due to the influence of Sea breeze, adjacent moisture from the ocean, shallow water level, and the shadow effect of the buildings. Further, the increase in water level was mainly attributed to the recent increase in rainfall and the extreme event in 2018. The higher EC in the lesser NDBI regions is attributed to the anthropogenic contamination from agriculture and landfill leachates. Though there was an increase in NDBI, the LST of the region was inferred to be reduced mainly due to the increase in water level and reduction of emission from desert sand by recent urban developments.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Agua Subterránea/análisis , Agua Subterránea/química , Monitoreo del Ambiente/métodos , Microclima , Clima Desértico , Temperatura , China , Conductividad Eléctrica
2.
Environ Monit Assess ; 195(1): 143, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36418655

RESUMEN

Coastal aquifer is a fragile environment due to the interaction of groundwater with seawater, especially in arid environments. Groundwater along Kuwait's Bay is polluted due to discharge of waste from desalination plants, power plants, and other anthropogenic activities. Earlier studies on submarine groundwater discharge in Kuwait's Bay region have reported the transfer of nutrient flux from the groundwater to Kuwait's Bay. The current study focused on nitrate sources and processes governing their distribution in groundwater samples collected from the southern part of Kuwait's Bay. The concentration of nitrate in the samples ranged from 22.7 to 803.9 mg/L. Higher values were noted in the samples collected inland and a few samples adjacent to the Bay. Spearman's correlation analysis of the data indicated that NO3- has a strong positive correlation with SO42- and moderate positive correlation with Na + , TDS/EC. The PCA analysis and factor scores revealed the different sources for groundwater nitrate contamination as follows: leakage of sewer lines in the urban region has led to the infiltration of contaminated sewage, high saline environment due to seawater intrusion, chemical weathering, and influence of denitrifying bacteria. The health risk has resulted due to the NO3- concentration being above the standard limit for adults. Furthermore, the nitrate concentration was higher in the region adjoining the landfills. In addition, the discharge of groundwater with higher nitrate to the adjacent open water in the Bay may lead to eutrophication. Hence, proper management strategies are to be adopted to control the nitrate pollution in groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/análisis , Kuwait , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua Subterránea/análisis , Óxidos de Nitrógeno/análisis
3.
Sci Total Environ ; 899: 165649, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478926

RESUMEN

The rainwater chemistry encompasses the signatures of geogenic and anthropogenic processes along the regional air mass movement apart from the local sources. The predominance of dust events and anthropogenic emissions in arid regions facilitate new particle formation. Further, rain events of different seasons depict moisture sources from diverse regions reflecting variation in the regional geochemistry with respect to seasons. Hence, to characterize the geochemical composition of rainwater, the study has focused on an integrated approach by considering regional transport, meteorological components and possible local sources. A total of 74 rainwater samples were collected from 27 rain events in 2018, 2019, and 2022, representing urban coastal areas of Kuwait predominantly of Ca-SO4-HCO3 type. The average pH and electrical conductivity of the rainwater were 7.18 and 140 µS/cm, respectively. The sea salt fractions calculated relative to Kuwait seawater ranged from 25.6 to >100 %, with higher values attributed to anthropogenic sources. Sea salt fraction, ion ratios, principal component analysis and factor scores revealed the terrestrial and anthropogenic sources apart from marine contributions. In addition, new particle formation and aerosols contributed to the rainwater chemistry involving SOx, NOx, and photochemical reactions during higher relative humidity and lesser wind speed. The HYSPLIT reflected that the moisture sources were largely from western regions of the study area, and those of December and January events had long-distance travel across the Azores high originating from northeast America. The trajectories of the November events are observed to originate from the Caspian/Black Sea region in the northeastern part of Kuwait with a relatively shorter distance of travel. The rainfall samples had higher ionic concentrations, and saturated with aragonite and calcite minerals in a few locations specifically after the dust events, while the subsequent rain events were less polluted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA