Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Cancer ; 152(9): 1916-1932, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637144

RESUMEN

Basal-like breast cancer (BLBC) is the most aggressive and heterogeneous breast cancer (BC) subtype. Conventional chemotherapies represent next to surgery the most frequently employed treatment options. Unfortunately, resistant tumor phenotypes often develop, resulting in therapeutic failure. To identify the early events occurring upon the first drug application and initiating chemotherapy resistance in BLBC, we leveraged the WAP-T syngeneic mammary carcinoma mouse model and we developed a strategy combining magnetic-activated cell sorting (MACS)-based tumor cell enrichment with high-throughput transcriptome analyses. We discovered that chemotherapy induced a massive gene expression reprogramming toward stemness acquisition to tolerate and survive the cytotoxic treatment in vitro and in vivo. Retransplantation experiments revealed that one single cycle of cytotoxic drug combination therapy (Cyclophosphamide, Adriamycin and 5-Fluorouracil) suffices to induce resistant tumor cell phenotypes in vivo. We identified Axl and its ligand Pros1 as highly induced genes driving cancer stem cell (CSC) properties upon chemotherapy in vivo and in vitro. Furthermore, from our analysis of BLBC patient datasets, we found that AXL expression is also strongly correlated with CSC-gene signatures, a poor response to conventional therapies and worse survival outcomes in those patients. Finally, we demonstrate that AXL inhibition sensitized BLBC-cells to cytotoxic treatment in vitro. Together, our data support AXL as a promising therapeutic target to optimize the efficiency of conventional cytotoxic therapies in BLBC.


Asunto(s)
Antineoplásicos , Carcinoma , Ratones , Animales , Antineoplásicos/farmacología , Transducción de Señal , Ciclofosfamida/farmacología , Células Madre Neoplásicas/metabolismo , Carcinoma/metabolismo , Línea Celular Tumoral
2.
Int J Cancer ; 152(6): 1210-1225, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36408933

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-ß (TGFß) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFßI increased growth of WT control spheroids, and inhibition of TGFß signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451116

RESUMEN

Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.


Asunto(s)
Rastreo Celular/métodos , Medios de Contraste , Cirugía Asistida por Computador/métodos , Micropartículas Derivadas de Células/metabolismo , Humanos , Leucocitos/metabolismo , Imagen por Resonancia Magnética/métodos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Tomografía de Emisión de Positrones/métodos , Cirugía Asistida por Computador/normas
4.
Br J Cancer ; 123(6): 942-954, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32601464

RESUMEN

BACKGROUND: The activation of the EGFR/Ras-signalling pathway in tumour cells induces a distinct chemokine repertoire, which in turn modulates the tumour microenvironment. METHODS: The effects of EGFR/Ras on the expression and translation of CCL20 were analysed in a large set of epithelial cancer cell lines and tumour tissues by RT-qPCR and ELISA in vitro. CCL20 production was verified by immunohistochemistry in different tumour tissues and correlated with clinical data. The effects of CCL20 on endothelial cell migration and tumour-associated vascularisation were comprehensively analysed with chemotaxis assays in vitro and in CCR6-deficient mice in vivo. RESULTS: Tumours facilitate progression by the EGFR/Ras-induced production of CCL20. Expression of the chemokine CCL20 in tumours correlates with advanced tumour stage, increased lymph node metastasis and decreased survival in patients. Microvascular endothelial cells abundantly express the specific CCL20 receptor CCR6. CCR6 signalling in endothelial cells induces angiogenesis. CCR6-deficient mice show significantly decreased tumour growth and tumour-associated vascularisation. The observed phenotype is dependent on CCR6 deficiency in stromal cells but not within the immune system. CONCLUSION: We propose that the chemokine axis CCL20-CCR6 represents a novel and promising target to interfere with the tumour microenvironment, and opens an innovative multimodal strategy for cancer therapy.


Asunto(s)
Quimiocina CCL20/biosíntesis , Receptores ErbB/fisiología , Neoplasias/inmunología , Microambiente Tumoral , Proteínas ras/fisiología , Animales , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estadificación de Neoplasias , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/etiología , Receptores CCR6/fisiología , Transducción de Señal/fisiología
5.
J Synchrotron Radiat ; 27(Pt 6): 1707-1719, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147198

RESUMEN

A multiscale three-dimensional (3D) virtual histology approach is presented, based on two configurations of propagation phase-contrast X-ray tomography, which have been implemented in close proximity at the GINIX endstation at the beamline P10/PETRA III (DESY, Hamburg, Germany). This enables the 3D reconstruction of characteristic morphological features of human pancreatic normal and tumor tissue, as obtained from cancer surgery, first in the form of a large-scale overview by parallel-beam illumination, followed by a zoom into a region-of-interest based on zoom tomography using a Kirkpatrick-Baez mirror with additional waveguide optics. To this end 1 mm punch biopsies of the tissue were taken. In the parallel tomography, a volumetric throughput on the order of 0.01 mm3 s-1 was achieved, while maintaining the ability to segment isolated cells. With a continuous rotation during the scan, a total acquisition time of less than 2 min was required for a full tomographic scan. Using the combination of both setups, islets of Langerhans, a three-dimensional cluster of cells in the endocrine part of the pancreas, could be located. Cells in such an islet were segmented and visualized in 3D. Further, morphological alterations of tumorous tissue of the pancreas were characterized. To this end, the anisotropy parameter Ω, based on intensity gradients, was used in order to quantify the presence of collagen fibers within the entire biopsy specimen. This proof-of-concept experiment of the multiscale approach on human pancreatic tissue paves the way for future 3D virtual pathology.


Asunto(s)
Imagenología Tridimensional/instrumentación , Microscopía de Contraste de Fase/instrumentación , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Tomografía Computarizada por Rayos X/instrumentación , Interfaz Usuario-Computador , Anisotropía , Biopsia , Humanos , Prueba de Estudio Conceptual
6.
Recent Results Cancer Res ; 216: 439-492, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32594395

RESUMEN

The spatiotemporal determination of molecular events and cells is important for understanding disease processes, especially in oncology, and thus for the development of novel treatments. Equally important is the knowledge of the biodistribution, localization, and targeted accumulation of novel therapies as well as monitoring of tumor growth and therapeutic response. Optical imaging provides an ideal versatile platform for imaging of all these problems and questions.


Asunto(s)
Neoplasias/diagnóstico por imagen , Técnicas Fotoacústicas , Humanos , Oncología Médica , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Distribución Tisular
7.
Neuroimage ; 199: 70-80, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31129306

RESUMEN

Knowledge of the three-dimensional (3d) neuronal cytoarchitecture is an important factor in order to understand the connection between tissue structure and function or to visualize pathological changes in neurodegenerative diseases or tumor development. The gold standard in neuropathology is histology, a technique which provides insights into the cellular organization based on sectioning of the sample. Conventional histology, however, misses the complete 3d information as only individual two-dimensional slices through the object are available. In this work, we use propagation-based phase-contrast x-ray tomography to perform 3d virtual histology on cerebellar tissue from mice. This technique enables us to non-invasively visualize the entire 3d density distribution of the examined samples at isotropic (sub-)cellular resolution. One central challenge, however, of the technique is the fact that contrast for important structural features can be easily lost due to small electron density differences, notably between the cells and surrounding tissue. Here, we evaluate the influence of different embedding media, which are intermediate steps in sample preparation for classical histology, on contrast formation and examine the applicability of the different sample preparations both at a synchrotron-based holotomography setup as well as a laboratory source.


Asunto(s)
Cerebelo/citología , Cerebelo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Sincrotrones , Microtomografía por Rayos X/métodos , Animales , Ratones
8.
Small ; 15(4): e1803776, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30536849

RESUMEN

Recently, second harmonic generation (SHG) nanomaterials have been generated that are efficiently employed in the classical (NIR) and extended (NIR-II) near infrared windows using a multiphoton microscope. The aim was to test bismuth ferrite harmonic nanoparticles (BFO-HNPs) for their ability to monitor pulmonary macrophages in mice. BFO-loaded MH-S macrophages are given intratracheally to healthy mice or BFO-HNPs are intranasally instilled in mice with allergic airway inflammation and lung sections of up to 100 µM are prepared. Using a two-photon-laser scanning microscope, it is shown that bright BFO-HNPs signals are detected from superficially localized cells as well as from deep within the lung tissue. BFO-HNPs are identified with an excellent signal-to-noise ratio and virtually no background signal. The SHG from the nanocrystals can be distinguished from the endogenous collagen-derived SHG around the blood vessels and bronchial structures. BFO-HNPs are primarily taken up by M2 alveolar macrophages in vivo. This SHG imaging approach provides novel information about the interaction of macrophages with cells and the extracellular matrix in lung disease as it is capable of visualizing and tracking NP-loaded cells at high resolution in thick tissues with minimal background fluorescence.


Asunto(s)
Bismuto/química , Compuestos Férricos/química , Macrófagos Alveolares/citología , Nanopartículas/química , Animales , Lavado Broncoalveolar , Femenino , Macrófagos Alveolares/ultraestructura , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Microscopía Electrónica , Nanopartículas/ultraestructura
9.
Bioessays ; 39(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28440551

RESUMEN

We present here the hypothesis that the unique microenvironmental pH landscape of acid-base transporting epithelia is an important factor in development of epithelial cancers, by rendering the epithelial and stromal cells pre-adapted to the heterogeneous extracellular pH (pHe ) in the tumor microenvironment. Cells residing in organs with net acid-base transporting epithelia such as the pancreatic ductal and gastric epithelia are exposed to very different, temporally highly variable pHe values apically and basolaterally. This translates into spatially and temporally non-uniform intracellular pH (pHi ) patterns. Disturbed pHe - and pHi -homeostasis contributes to essentially all hallmarks of cancer. Our hypothesis, that the physiological pHe microenvironment in acid-base secreting epithelia shapes cancers arising in these tissues, can be tested using novel imaging tools. The acidic tumor pHe in turn might be exploited therapeutically. Pancreatic cancers are used as our prime example, but we propose that this concept is also relevant for other cancers of acid-base transporting epithelia.


Asunto(s)
Carcinogénesis , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Animales , Progresión de la Enfermedad , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/metabolismo
10.
Int J Cancer ; 142(10): 2118-2129, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29277891

RESUMEN

A crucial point for the management of pancreatic ductal adenocarcinoma (PDAC) is the decrease of R1 resections. Our aim was to evaluate the combination of multispectral optoacoustic tomography (MSOT) with fluorescence guided surgery (FGS) for diagnosis and perioperative detection of tumor nodules and resection margins in a xenotransplant mouse model of human pancreatic cancer. The peptide cRGD, conjugated with the near infrared fluorescent (NIRF) dye IRDye800CW and with a trans-cyclooctene (TCO) tag for future click chemistry (cRGD-800CW-TCO), was applied to PDAC bearing immunodeficient nude mice; 27 days after orthotopic transplantation of human AsPC-1 cells into the head of the pancreas, mice were injected with cRGD-800CW-TCO and imaged with fluorescence- and optoacoustic devices before and 2, 6 and 24 hr after injection, before they were sacrificed and dissected with a guidance of FGS imaging system. Fluorescence imaging of cRGD-800CW-TCO allowed detection of the tumor area but without information about the depth, whereas MSOT allowed high resolution 3 D identification of the tumor area, in particular of small tumor nodules. Highly sensitive delineation of tumor burden was achieved during FGS in all mice. Imaging of whole-mouse cryosections, histopathological analysis and NIRF microscopy confirmed the localization of cRGD-800CW-TCO within the tumor tissue. In principle, all imaging modalities applied here were able to detect PDAC in vivo. However, the combination of MSOT and FGS provided detailed spatial information of the signal and achieved a complete overview of the distribution and localization of cRGD-800CW-TCO within the tumor before and during surgical intervention.


Asunto(s)
Carcinoma Ductal Pancreático/diagnóstico por imagen , Imagen Óptica/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Animales , Bencenosulfonatos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/cirugía , Línea Celular Tumoral , Ciclooctanos , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes , Xenoinjertos/diagnóstico por imagen , Humanos , Indoles , Ratones , Imagen Multimodal/métodos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/cirugía , Péptidos Cíclicos , Cirugía Asistida por Computador/métodos
11.
J Synchrotron Radiat ; 25(Pt 4): 1153-1161, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979177

RESUMEN

Synchrotron radiation micro-computed tomography (SRµCT) based virtual histology, in combination with dedicated ex vivo staining protocols and/or phase contrast, is an emerging technology that makes use of three-dimensional images to provide novel insights into the structure of tissue samples at microscopic resolution with short acquisition times of the order of minutes or seconds. However, the high radiation dose creates special demands on sample preparation and staining. As a result of the lack of specific staining in virtual histology, it can supplement but not replace classical histology. Therefore, the aim of this study was to establish and compare optimized ex vivo staining and acquisition protocols for SRµCT-based virtual histology of soft-tissue samples, which could be integrated into the standard workflow of classical histology. The high grade of coherence of synchrotron radiation allows the application of propagation-based phase contrast imaging (PBI). In this study, PBI yielded a strong increase in image quality even at lower radiation doses and consequently prevented any damage to the tissue samples or the embedding material. This work has demonstrated that the improvement in contrast-to-noise ratio by PBI enabled label-free virtual histology of soft-tissue specimens embedded in paraffin to a level of detail that exceeds that achieved with staining protocols.


Asunto(s)
Encéfalo/anatomía & histología , Carcinoma Ductal Pancreático/patología , Corazón/anatomía & histología , Pulmón/anatomía & histología , Neoplasias Pancreáticas/patología , Coloración y Etiquetado , Sincrotrones , Microtomografía por Rayos X/métodos , Animales , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dosis de Radiación
12.
J Synchrotron Radiat ; 25(Pt 6): 1827-1832, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407195

RESUMEN

In-line free propagation phase-contrast synchrotron tomography of the lungs has been shown to provide superior image quality compared with attenuation-based computed tomography (CT) in small-animal studies. The present study was performed to prove the applicability on a human-patient scale using a chest phantom with ventilated fresh porcine lungs. Local areas of interest were imaged with a pixel size of 100 µm, yielding a high-resolution depiction of anatomical hallmarks of healthy lungs and artificial lung nodules. Details like fine spiculations into surrounding alveolar spaces were shown on a micrometre scale. Minor differences in artificial lung nodule density were detected by phase retrieval. Since we only applied a fraction of the X-ray dose used for clinical high-resolution CT scans, it is believed that this approach may become applicable to the detailed assessment of focal lung lesions in patients in the future.


Asunto(s)
Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Sincrotrones , Algoritmos , Puntos Anatómicos de Referencia , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Prueba de Estudio Conceptual , Porcinos , Tomografía Computarizada por Rayos X
13.
Am J Physiol Lung Cell Mol Physiol ; 313(5): L763-L771, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28775094

RESUMEN

Chronic asthma patients experience difficulties even years after the inciting allergen. Although studies in small animal asthma models have enormously advanced progress in uncovering the mechanisms of inception and development of the disease, little is known about the processes involved in the persistence of asthma symptoms in the absence of allergen exposure. Long-term asthma mouse models have so far been scarce or not been able to reproduce the findings in patients. Here we used a common ovalbumin-induced acute allergic airway inflammation mouse model to study lung function and remodeling after a 4-mo recovery period. We show by X-ray-based lung function measurements that the recovered mice continue to show impaired lung function by displaying significant air trapping compared with controls. High-resolution synchrotron phase-contrast computed tomography of structural alterations and diaphragm motion analysis suggest that these changes in pulmonary function are the result of a pronounced loss in lung elasticity. Histology of lung sections confirmed that this is most likely caused by a decrease in elastic fibers, indicating that remodeling can develop or persist independent of acute inflammation and is closely related to a loss in lung function. Our findings demonstrate that this X-ray-based imaging platform has the potential to comprehensively and noninvasively unravel long-term effects in preclinical mouse models of allergic airway inflammation and thus benefits our understanding of chronic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/fisiopatología , Elasticidad/efectos de los fármacos , Inflamación/patología , Pulmón/fisiopatología , Alérgenos/metabolismo , Animales , Asma/patología , Modelos Animales de Enfermedad , Pulmón/patología , Masculino , Ratones Endogámicos BALB C , Ovalbúmina/farmacología
14.
Gastroenterology ; 150(2): 513-25.e10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26597578

RESUMEN

BACKGROUND & AIMS: Cancer cells with high metastatic potential and stem cell-like characteristics express the cell surface marker CD44. CD44 isoforms that include the v6 exon are co-receptors for the receptor tyrosine kinases MET and Vascular Endothelial Growth factor Receptor-2 (VEGFR-2). We studied CD44v6 signaling in several pancreatic cancer cell lines, and its role in tumor growth and metastasis in several models of pancreatic cancer. METHODS: We analyzed the effects of v6 peptides that interfere with the co-receptor functions of CD44v6 for MET and VEGFR-2 in tumors and metastases grown from cells that express different CD44 isoforms, including CD44v6. The peptides were injected into rats with syngeneic tumors and mice with orthotopic or xenograft tumors. We also tested the effects of the peptides in mice with xenograft tumors grown from patient tumor samples and mice that express an oncogenic form of RAS and develop spontaneous pancreatic cancer (KPC mice). We measured levels of CD44v6 messenger RNA (mRNA) in pancreatic cancer tissues from 136 patients. RESULTS: Xenograft tumors grown from human cancer cells injected with v6 peptides were smaller and formed fewer metastases in mice. The v6 peptide was more efficient than the MET inhibitor crizotinib and/or the VEGFR-2 inhibitor pazopanib in reducing xenograft tumor growth and metastasis. Injection of KPC mice with the v6 peptide increased their survival time. Injection of mice and rats bearing metastases with the v6 peptide induced regression of metastases. Higher levels of CD44v6 mRNA in human pancreatic tumor tissues were associated with increased expression of MET, tumor metastasis, and shorter patient survival times. CONCLUSIONS: Peptide inhibitors of CD44v6 isoforms block tumor growth and metastasis in several independent models of pancreatic cancer. The v6 peptides induced regression of metastases. Levels of CD44v6 mRNA are increased, along with those of MET mRNA, in patients with metastatic pancreatic tumors, compared with nonmetastatic tumors; the increased levels correlated with shorter patient survival time.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Crizotinib , Regulación Neoplásica de la Expresión Génica , Genes ras , Humanos , Receptores de Hialuranos/genética , Indazoles , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Ratones Desnudos , Ratones Transgénicos , Mutación , Metástasis de la Neoplasia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Ratas , Sulfonamidas/farmacología , Factores de Tiempo , Transfección , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Synchrotron Radiat ; 24(Pt 6): 1163-1172, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091059

RESUMEN

A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.


Asunto(s)
Corazón/diagnóstico por imagen , Difracción de Rayos X/métodos , Animales , Ratones , Dispersión del Ángulo Pequeño
16.
Blood ; 125(2): 249-60, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25406351

RESUMEN

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC-derived microenvironment permitted homing and maintenance of long-term murine SLAM(+) hematopoietic stem cells (HSCs), as well as human CD34(+)/CD38(-)/CD90(+)/CD45RA(+) HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre , Western Blotting , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Citometría de Flujo , Humanos , Osteogénesis/fisiología
17.
Int J Cancer ; 139(10): 2277-89, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27428782

RESUMEN

The high rate of recurrence in patients with pancreatic ductal adenocarcinoma (PDAC) could be reduced by supporting the surgeons in discriminating healthy from diseased tissues with intraoperative fluorescence-guidance. Here, we studied the suitability of Cetuximab, a therapeutic monoclonal antibody targeting the human epidermal growth factor receptor (EGFR), near-infrared (NIR) fluorescently labeled as a new tool for fluorescence-guided surgery. Distribution and binding of systemically injected Cetuximab Alexa Fluor 647 conjugate (Cetux-Alexa-647) and the co-injected control human IgG Alexa Fluor 750 conjugate (hIgG-Alexa-750) was studied over 48 h by NIR fluorescence imaging in mice bearing human orthotopic AsPC-1 and MIA PaCa-2 PDAC tumors. Cetux-Alexa-647, but not the control hIgG-Alexa-750 fluorescence, was specifically detected in vivo in both primary pancreatic tumors with maximum fluorescence intensities at 24 h, and in metastases of AsPC-1 tumors as small as 1 mm. Lifetime analysis and NIR fluorescence microscopy of tumor sections confirmed the binding specificity of Cetux-Alexa-647 to PDAC cells. Comparable results were obtained with Cetuximab conjugated to Alexa Fluor 750 dye (Cetux-Alexa-750). Fluorescence-guided dissection, performed 24 h after injection of Cetuximab conjugated to IRDye 800CW (Cetux-800CW), enabled a real-time delineation of AsPC-1 tumor margins, and small metastases. Odyssey scans revealed that only the vital part of the tumor, but not the necrotic part was stained with Cetux-800CW. NIR fluorescently labeled Cetuximab may be a promising tool that can be applied for fluorescence-guided surgery to visualize tumor margins and metastatic sites in order to allow a precise surgical resection.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal Pancreático/diagnóstico por imagen , Cetuximab/análisis , Microscopía Fluorescente/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Animales , Carbocianinas/análisis , Carcinoma Ductal Pancreático/enzimología , Cetuximab/metabolismo , Receptores ErbB/biosíntesis , Receptores ErbB/metabolismo , Femenino , Colorantes Fluorescentes/análisis , Xenoinjertos , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/enzimología , Succinimidas/análisis
18.
Int J Cancer ; 139(11): 2540-52, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27513892

RESUMEN

The ATP-gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu-1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu-1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7(-/-) animals. PancTu-1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120-treated mice showed reduced bioluminescence compared to saline-treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120-treated tumours.


Asunto(s)
Adamantano/análogos & derivados , Aminoquinolinas/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Receptores Purinérgicos P2X7/biosíntesis , Adamantano/farmacología , Animales , Carcinoma Ductal Pancreático/patología , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Xenoinjertos , Humanos , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos BALB C , Terapia Molecular Dirigida , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Receptores Purinérgicos P2X7/metabolismo
20.
Eur Biophys J ; 45(7): 721-733, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27444284

RESUMEN

The Kv10.1 (Eag1) voltage-gated potassium channel represents a promising molecular target for novel cancer therapies or diagnostic purposes. Physiologically, it is only expressed in the brain, but it was found overexpressed in more than 70 % of tumours of diverse origin. Furthermore, as a plasma membrane protein, it is easily accessible to extracellular interventions. In this study we analysed the feasibility of the anti-Kv10.1 monoclonal antibody mAb62 to target tumour cells in vitro and in vivo and to deliver therapeutics to the tumour. Using time-domain near infrared fluorescence (NIRF) imaging in a subcutaneous MDA-MB-435S tumour model in nude mice, we showed that mAb62-Cy5.5 specifically accumulates at the tumour for at least 1 week in vivo with a maximum intensity at 48 h. Blocking experiments with an excess of unlabelled mAb62 and application of the free Cy5.5 fluorophore demonstrate specific binding to the tumour. Ex vivo NIRF imaging of whole tumours as well as NIRF imaging and microscopy of tumour slices confirmed the accumulation of the mAb62-Cy5.5 in tumours but not in brain tissue. Moreover, mAb62 was conjugated to the prodrug-activating enzyme ß-D-galactosidase (ß-gal; mAb62-ß-gal). The ß-gal activity of the mAb62-ß-gal conjugate was analysed in vitro on Kv10.1-expressing MDA-MB-435S cells in comparison to control AsPC-1 cells. We show that the mAb62-ß-gal conjugate possesses high ß-gal activity when bound to Kv10.1-expressing MDA-MB-435S cells. Moreover, using the ß-gal activatable NIRF probe DDAOG, we detected mAb62-ß-gal activity in vivo over the tumour area. In summary, we could show that the anti-Kv10.1 antibody is a promising tool for the development of novel concepts of targeted cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Transformación Celular Neoplásica , Canales de Potasio Éter-A-Go-Go/inmunología , Imagen Óptica/métodos , Animales , Carbocianinas/metabolismo , Línea Celular Tumoral , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA