Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 304, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519886

RESUMEN

Fusarium, a member of the Ascomycota fungi, encompasses several pathogenic species significant to plants and animals. Some phytopathogenic species have received special attention due to their negative economic impact on the agricultural industry around the world. Traditionally, identification and taxonomic analysis of Fusarium have relied on morphological and phenotypic features, including the fungal host, leading to taxonomic conflicts that have been solved using molecular systematic technologies. In this work, we applied a phylogenomic approach that allowed us to resolve the evolutionary history of the species complexes of the genus and present evidence that supports the F. ventricosum species complex as the most basal lineage of the genus. Additionally, we present evidence that proposes modifications to the previous hypothesis of the evolutionary history of the F. staphyleae, F. newnesense, F. nisikadoi, F. oxysporum, and F. fujikuroi species complexes. Evolutionary analysis showed that the genome GC content tends to be lower in more modern lineages, in both, the whole-genome and core-genome coding DNA sequences. In contrast, genome size gain and losses are present during the evolution of the genus. Interestingly, core genome duplication events positively correlate with genome size. Evolutionary and genome conservation analysis supports the F3 hypothesis of Fusarium as a more compact and conserved group in terms of genome conservation. By contrast, outside of the F3 hypothesis, the most basal clades only share 8.8% of its genomic sequences with the F3 clade.


Asunto(s)
Fusarium , Fusarium/genética , Genoma Fúngico , Genómica , Tamaño del Genoma , Filogenia , Enfermedades de las Plantas/microbiología
2.
J Exp Bot ; 74(21): 6588-6607, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37656729

RESUMEN

Trichomes are specialized epidermal cells in aerial plant parts. Trichome development proceeds in three stages, determination of cell fate, specification, and morphogenesis. Most genes responsible for these processes have been identified in the unicellular branched leaf trichomes from the model Arabidopsis thaliana. Less is known about the molecular basis of multicellular trichome formation across flowering plants, especially those formed in floral organs of early diverging angiosperms. Here, we aim to identify the genetic regulatory network (GRN) underlying multicellular trichome development in the kettle-shaped trap flowers of Aristolochia (Aristolochiaceae). We selected two taxa for comparison, A. fimbriata, with trichomes inside the perianth, which play critical roles in pollination, and A. macrophylla, lacking specialized trichomes in the perianth. A detailed morphoanatomical characterization of floral epidermis is presented for the two species. We compared transcriptomic profiling at two different developmental stages in the different perianth portions (limb, tube, and utricle) of the two species. Moreover, we present a comprehensive expression map for positive regulators and repressors of trichome development, as well as cell cycle regulators. Our data point to extensive modifications in gene composition, expression, and putative roles in all functional categories when compared with model species. We also record novel differentially expressed genes (DEGs) linked to epidermis patterning and trichome development. We thus propose the first hypothetical genetic regulatory network (GRN) underlying floral multicellular trichome development in Aristolochia, and pinpoint key factors responsible for the presence and specialization of floral trichomes in phylogenetically distant species of the genus.


Asunto(s)
Arabidopsis , Aristolochia , Aristolochiaceae , Tricomas/metabolismo , Aristolochia/genética , Aristolochiaceae/genética , Transcriptoma , Redes Reguladoras de Genes , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
3.
Fish Shellfish Immunol ; 140: 108928, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423403

RESUMEN

The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10), M4+M10 (P. megaterium M4, and Priestia sp. M10) and the single bacteria as controls; A12 (L. lactis A12), M4 (P. megaterium M4), M10 (Priestia sp. M10), also a commercial feed without any probiotic addition was included as a control. The results showed that all probiotic treatments improved the growth performance, intestinal histology, and resistance during experimental infection with S. agalactiae in comparison to the control fish. Also, the administration of probiotics resulted in the modulation of genes associated with the innate and adaptive immune systems that were non-dependent on microbial colonization. Surprisingly, L. lactis A12 alone induced benefits in fish compared to the microbial consortia, showing the highest increase in growth rate, survival during experimental infection with S. agalactiae, increased intestinal fold length, and the number of differentially expressed genes. Lastly, we conclude that a competitive exclusion culture is a reliable source of probiotics, and monostrain L. lactis A12 has comparable or even greater probiotic potential than the bacterial consortia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Microbioma Gastrointestinal , Probióticos , Tilapia , Animales , Probióticos/farmacología , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos
4.
Curr Microbiol ; 79(2): 39, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982251

RESUMEN

Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Pared Celular , Humanos , Mycobacterium tuberculosis/genética , Transcriptoma , Virulencia/genética
5.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163386

RESUMEN

Zoonotic visceral leishmaniosis caused by Leishmania infantum is an endemic disease in the Mediterranean Basin affecting mainly humans and dogs, the main reservoir. The leishmaniosis outbreak declared in the Community of Madrid (Spain) led to a significant increase in human disease incidence without enhancing canine leishmaniosis prevalence, suggesting a better adaptation of the outbreak's isolates by other host species. One of the isolates obtained in the focus, IPER/ES/2012/BOS1FL1 (BOS1FL1), has previously demonstrated a different phenotype than the reference strain MCAN/ES/1996/BCN150 (BCN150), characterized by a lower infectivity when interacting with canine macrophages. Nevertheless, not enough changes in the cell defensive response were found to support their different behavior. Thus, we decided to investigate the molecular mechanisms involved in the interaction of both parasites with DH82 canine macrophages by studying their transcriptomic profiles developed after infection using RNA sequencing. The results showed a common regulation induced by both parasites in the phosphoinositide-3-kinase-protein kinase B/Akt and NOD-like receptor signaling pathways. However, other pathways, such as phagocytosis and signal transduction, including tumor necrosis factor, mitogen-activated kinases and nuclear factor-κB, were only regulated after infection with BOS1FL1. These differences could contribute to the reduced infection ability of the outbreak isolates in canine cells. Our results open a new avenue to investigate the true role of adaptation of L. infantum isolates in their interaction with their different hosts.


Asunto(s)
Perros/genética , Perros/parasitología , Leishmania infantum/patogenicidad , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/veterinaria , Estadios del Ciclo de Vida/fisiología , Macrófagos/parasitología , Transcriptoma/genética , Animales , Línea Celular , Regulación de la Expresión Génica , Ontología de Genes , Leishmania infantum/crecimiento & desarrollo , Leishmaniasis Visceral/parasitología , Macrófagos/metabolismo , Proteínas NLR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Virulencia
6.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163725

RESUMEN

Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host-pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host-pathogen interaction.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Interacciones Huésped-Patógeno/genética , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , RNA-Seq , Tuberculosis/microbiología
7.
Mol Phylogenet Evol ; 161: 107185, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932614

RESUMEN

Apicomplexa is a phylum of parasitic protozoa; among them are the order Haemosporida, vector-borne parasites that include those that cause malaria (genus Plasmodium). Most Apicomplexa species have a non-photosynthetic plastid or apicoplast. Given its unique metabolic pathways, this organelle is considered a target for malaria therapeutics. Regardless of its importance, there is a paucity of complete apicoplast genome data hindering comparative studies. Here, the Haemoproteus (Haemoproteus) columbae apicoplast genome (lineage HAECOL1) was obtained using next-generation sequencing. This genome was included in a comparative analysis with other plastids. This 29.8 kb circular genome shares the same structure found in Plasmodium parasites. It is A + T rich (87.7%), comparable but at the higher end of A + T content observed in Plasmodium species (85.5-87.2%). As expected, considering its high A + T content, the synonymous codon usage (RSCU) and the effective number of codons (ENc) showed a moderate codon bias. Several apicoplast genes have a phylogenetic signal. However, unlike mitochondrial genes, single-gene phylogenies have low support in haemosporidian clades that diverged recently. The H. columbae apicoplast genome suggests that the apicoplast function may be conserved across Haemosporida. This parasite could be a model to study this organelle in a non-mammalian system.


Asunto(s)
Apicoplastos/genética , Haemosporida/citología , Filogenia , Plasmodium/parasitología
8.
Ann Bot ; 127(6): 749-764, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33630993

RESUMEN

BACKGROUND AND AIMS: The epidermis constitutes the outermost tissue of the plant body. Although it plays major structural, physiological and ecological roles in embryophytes, the molecular mechanisms controlling epidermal cell fate, differentiation and trichome development have been scarcely studied across angiosperms, and remain almost unexplored in floral organs. METHODS: In this study, we assess the spatio-temporal expression patterns of GL2, GL3, TTG1, TRY, MYB5, MYB6, HDG2, MYB106-like, WIN1 and RAV1-like homologues in the magnoliid Aristolochia fimbriata (Aristolochiaceae) by using comparative RNA-sequencing and in situ hybridization assays. KEY RESULTS: Genes involved in Aristolochia fimbriata trichome development vary depending on the organ where they are formed. Stem, leaf and pedicel trichomes recruit most of the transcription factors (TFs) described above. Conversely, floral trichomes only use a small subset of genes including AfimGL2, AfimRAV1-like, AfimWIN1, AfimMYB106-like and AfimHDG2. The remaining TFs, AfimTTG1, AfimGL3, AfimTRY, AfimMYB5 and AfimMYB6, are restricted to the abaxial (outer) and the adaxial (inner) pavement epidermal cells. CONCLUSIONS: We re-evaluate the core genetic network shaping trichome fate in flowers of an early-divergent angiosperm lineage and show a morphologically diverse output with a simpler genetic mechanism in place when compared to the models Arabidopsis thaliana and Cucumis sativus. In turn, our results strongly suggest that the canonical trichome gene expression appears to be more conserved in vegetative than in floral tissues across angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Aristolochia , Aristolochiaceae , Proteínas de Arabidopsis/genética , Aristolochia/genética , Epidermis , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Tricomas/genética
9.
Am J Bot ; 108(8): 1315-1330, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34458983

RESUMEN

PREMISE: Floral spurs are key innovations associated with elaborate pollination mechanisms that have evolved independently several times across angiosperms. Spur formation can shift the floral symmetry from radial to bilateral, as it is the case in Tropaeolum, the only member of the Brassicales with floral nectar spurs. The genetic mechanisms underlying both spur and bilateral symmetry in the family have not yet been investigated. METHODS: We studied flower development and morphoanatomy of Tropaeolum longifolium. We also generated a reference transcriptome and isolated all candidate genes involved in adaxial-abaxial differential growth during spur formation. Finally, we evaluated the evolution of the targeted genes across Brassicales and examined their expression in dissected floral parts. RESULTS: Five sepals initiate spirally, followed by five petals alternate to the sepals, five antesepalous stamens, three antepetalous stamens, and three carpels. Intercalary growth at the common base of sepals and petals forms a floral tube. The spur is an outgrowth from the adaxial region of the tube, lined up with the medial sepal. We identified Tropaeolum specific duplications in the TCP3/4L and STM gene lineages, which are critical for spur formation in other taxa. In addition, we found that TM6 (MADS-box), RL2 (RAD-like7), and KN2/6L2 and OSH6L (KNOX1 genes), have been lost in core Brassicales but retained in Tropaeolum. CONCLUSIONS: Three genes are pivotal during the extreme adaxial-abaxial asymmetry of the floral tube, namely, TlTCP4L2 restricted to the adaxial side where the spur is formed, and TlTCP12 and TlSTM1 to the abaxial side, lacking a spur.


Asunto(s)
Magnoliopsida , Tropaeolum , Flores/genética , Néctar de las Plantas , Polinización
10.
Am J Bot ; 108(10): 1838-1860, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699609

RESUMEN

PREMISE: The Rubiaceae are ideal for studying the diversity of fruits that develop from flowers with inferior ovary. We aimed to identify morpho-anatomical changes during fruit development that distinguish those derived from the carpel versus the extra-carpellary tissues. In addition, we present the fruit genetic core regulatory network in selected Rubiaceae species and compare it in terms of copy number and expression patterns to model core eudicots in the Brassicaceae and the Solanaceae. METHODS: We used light microscopy to follow morphoanatomical changes in four selected species with different fruit types. We generated reference transcriptomes for seven selected Rubiaceae species and isolated homologs of major transcription factors involved in fruit development histogenesis, assessed their homology, identified conserved and new protein motifs, and evaluated their expression in three species with different fruit types. RESULTS: Our studies revealed ovary-derived pericarp tissues versus floral-cup-derived epicarp tissues. Gene evolution analyses of FRUITFULL, SHATTERPROOF, ALCATRAZ, INDEHISCENT and REPLUMLESS homologs suggest that the gene complement in Rubiaceae is simpler compared to that in Brassicaceae or Solanaceae. Expression patterns of targeted genes vary in response to the fruit type and the developmental stage evaluated. CONCLUSIONS: Morphologically similar fruits can have different anatomies as a result of convergent tissues developed from the epicarps covering the anatomical changes from the pericarps. Expression analyses suggest that the fruit patterning regulatory network established in model core eudicots cannot be extrapolated to asterids with inferior ovaries.


Asunto(s)
Gentianales , Rubiaceae , Anatomía Comparada , Flores/genética , Flores/metabolismo , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Gentianales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rubiaceae/genética
11.
New Phytol ; 228(2): 752-769, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32491205

RESUMEN

Controlled spatiotemporal cell division and expansion are responsible for floral bilateral symmetry. Genetic studies have pointed to class II TCP genes as major regulators of cell division and floral patterning in model core eudicots. Here we study their evolution in perianth-bearing Piperales and their expression in Aristolochia, a rare occurrence of bilateral perianth outside eudicots and monocots. The evolution of class II TCP genes reveals single-copy CYCLOIDEA-like genes and three paralogs of CINCINNATA (CIN) in early diverging angiosperms. All class II TCP genes have independently duplicated in Aristolochia subgenus Siphisia. Also CIN2 genes duplicated before the diversification of Saruma and Asarum. Sequence analysis shows that CIN1 and CIN3 share motifs with Cyclin proteins and CIN2 genes have lost the miRNA319a binding site. Expression analyses of all paralogs of class II TCP genes in Aristolochia fimbriata point to a role of CYC and CIN genes in maintaining differential perianth expansion during mid- and late flower developmental stages by promoting cell division in the distal and ventral portion of the limb. It is likely that class II TCP genes also contribute to cell division in the leaf, the gynoecium and the ovules in A. fimbriata.


Asunto(s)
Aristolochia , Magnoliopsida , Aristolochia/genética , Evolución Molecular , Flores , Filogenia
12.
Parasitol Res ; 119(9): 2935-2942, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32594239

RESUMEN

Cryptosporidium spp. are apicomplexan protozoa associated with chronic diarrhea in AIDS and other immunocompromised patients, and one of the commonest causes of childhood diarrhea and malnutrition, particularly in low-income settings. In Colombia, there are few molecular epidemiological studies on Cryptosporidium spp.; thereby, the transmission dynamics of this parasite in the country is poorly known. This study evaluated the diversity of Cryptosporidium at species, subtype family, and subtype level in children attending various day-care centers in Medellin, Colombia. Two hundred and ninety stool samples from children < 5 years of age were collected from April to November of 2015. All samples were processed by PCR and sequence analysis of the ssu RNA gene and the gp60 gene. An infection rate of 2.4% was observed, with only two Cryptosporidium species identified: C. hominis (6/7) and C. meleagridis (1/7). Cryptosporidium hominis isolates belonged to the subtypes IbA10G2, IaA13R6 and IaA13R7; IIIbA26G1R1 C. meleagridis subtype was also detected. There is a C. hominis predominance in the children evaluated, suggesting an important role of the anthroponotic transmission cycle in the day-care centers analyzed. Further investigation is required to determine infection sources and susceptible hosts in order to define appropriate management of cryptosporidiosis.


Asunto(s)
Cuidado del Niño/estadística & datos numéricos , Criptosporidiosis/epidemiología , Criptosporidiosis/transmisión , Cryptosporidium/aislamiento & purificación , Adolescente , Animales , Niño , Preescolar , Colombia/epidemiología , Criptosporidiosis/parasitología , Cryptosporidium/clasificación , ADN Protozoario/genética , Diarrea/parasitología , Heces/parasitología , Femenino , Genotipo , Humanos , Higiene , Masculino , Reacción en Cadena de la Polimerasa , Pobreza , Sulfotransferasas/genética
13.
Mol Phylogenet Evol ; 135: 193-202, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30914393

RESUMEN

Holoparasitism has led to extreme plastome reduction. Plastomes in the legume holoparasite Pilostyles (Apodanthaceae) are the most reduced in both size and gene content known so far in Embryophytes. Here, we found that the Pilostyles boyacensis plastome, the only American species sequenced so far, is reduced to seven functional genes, accD, rpl2, rrn16 (=16S), rrn23 (=23S), rps3, rps12 and a putative oxidoreductase (PbOx). An additional gene, not annotated in the genome, is actively transcribed between accD and rps12, and by synteny we predict corresponds to rps4. We present data on plastome assembly, transcriptomic data that confirm the transcriptional activity of all genes and describe for the first time six transcript variants of a putative ORF likely having oxidoreductase activity. Our data show that such extreme reduction in P. boyacensis is similar but not identical to that reported in one Australian and one African species of the genus. Such intercontinental similarity suggests that the legume-Pilostyles holoparasitism was already in place during the main African-Australian-South American break-up. We compare plastome content and synteny between the three sequenced species, perform phylogenetic analyses across angiosperms of the six annotated plastome genes, and discuss the odd phylogenetic affinities of 16S and 23S, likely caused by HGT prior the diversification of both legumes and Pilostyles.


Asunto(s)
Genes de Plantas , Genoma de Plastidios/genética , Magnoliopsida/genética , África , Secuencia de Aminoácidos , Australia , Secuencia de Bases , Mapeo Contig , Anotación de Secuencia Molecular , Filogenia , Sintenía/genética , Transcripción Genética
14.
Genomics ; 106(1): 43-51, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25820207

RESUMEN

Brucella canis is a pathogenic bacterium for dogs and its zoonotic potential has been increasing in recent years. In this study, we report the sequencing, annotation and analysis of the genome of Brucella canis strain Oliveri isolated from a dog in a breeding kennel in Medellín, Colombia, South America. Whole genome shotgun sequencing was carried out using the ROCHE 454 GS FLX Titanium technology at the National Center for Genomic Sequencing-CNSG in Medellin, Colombia. The assembly procedure was performed using Newbler v2.6. In the genome annotation process, each contig was analyzed independently using as reference Brucella suis ATCC 1330 chromosomes. This new genome could be useful for the development of diagnostic tools and for vaccines search as well, in order to reduce the health impact of this infection in both, dogs and humans. The sequence was deposited in EMBL-EBI with accession numbers HG803175 and HG803176 for chromosomes 1 and 2, respectively.


Asunto(s)
Brucella canis/genética , Genoma Bacteriano , Animales , Proteínas Bacterianas/genética , Brucella canis/aislamiento & purificación , Perros , Mutación INDEL , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple
15.
Arch Virol ; 160(2): 557-60, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25466572

RESUMEN

Based on the results of a deep sequencing transcriptome study of tamarillo (Solanum betaceum), we report the genome sequence of a virus from this host plant. Since this probably represents a new member of the genus Potyvirus, the name tamarillo leaf malformation virus (TaLMV) has been proposed. Phylogenetic analysis reveals that TaLMV is the closest relative of Colombian datura virus (CDV), followed by three other potyviruses: tobacco etch virus, potato virus A and tobacco vein mottling virus. This is the first sequence of a potyvirus infecting Solanum betaceum containing the complete polyprotein coding region.


Asunto(s)
Genoma Viral/genética , Potyvirus/genética , Solanum/virología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Secuencia de Bases , Colombia , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Potyvirus/aislamiento & purificación , ARN Viral/genética , Análisis de Secuencia de ARN , Proteínas Virales/genética
16.
Virus Genes ; 50(3): 518-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25680343

RESUMEN

Transcriptome analysis of a Cape gooseberry (Physalis peruviana) plant with leaf symptoms of a mild yellow mosaic typical of a viral disease revealed an infection with Potato virus X (PVX). The genome sequence of the PVX-Physalis isolate comprises 6435 nt and exhibits higher sequence similarity to members of the Eurasian group of PVX (~95 %) than to the American group (~77 %). Genome organization is similar to other PVX isolates with five open reading frames coding for proteins RdRp, TGBp1, TGBp2, TGBp3, and CP. 5' and 3' untranslated regions revealed all regulatory motifs typically found in PVX isolates. The PVX-Physalis genome is the only complete sequence available for a Potexvirus in Colombia and is a new addition to the restricted number of available sequences of PVX isolates infecting plant species different to potato.


Asunto(s)
Genoma Viral , Physalis/virología , Potexvirus/genética , ARN Viral/genética , Análisis de Secuencia de ADN , Análisis por Conglomerados , Colombia , Orden Génico , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , Potexvirus/aislamiento & purificación , Homología de Secuencia , Sintenía
17.
Front Microbiol ; 15: 1349453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486696

RESUMEN

This study delves into the evolutionary history of Anaerolineaceae, a diverse bacterial family within the Chloroflexota phylum. Employing a multi-faceted approach, including phylogenetic analyses, genomic comparisons, and exploration of adaptive features, the research unveils novel insights into the family's taxonomy and evolutionary dynamics. The investigation employs metagenome-assembled genomes (MAGs), emphasizing their prevalence in anaerobic environments. Notably, a novel mesophilic lineage, tentatively named Mesolinea, emerges within Anaerolineaceae, showcasing a distinctive genomic profile and apparent adaptation to a mesophilic lifestyle. The comprehensive genomic analyses shed light on the family's complex evolutionary patterns, including the conservation of key operons in thermophiles, providing a foundation for understanding the diverse ecological roles and adaptive strategies of Anaerolineaceae members.

18.
Toxins (Basel) ; 16(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787076

RESUMEN

Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz-Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos , Perfilación de la Expresión Génica , Transcriptoma , Animales , Serpientes de Coral/genética , Venenos Elapídicos/genética , Venenos Elapídicos/química , Secuencia de Aminoácidos , Simulación por Computador , Serpientes Venenosas
19.
Braz J Microbiol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913252

RESUMEN

The Yanomami are one of the oldest indigenous tribes in the Amazon and are direct descendants of the first people to colonize South America 12,000 years ago. They are located on the border between Venezuela and Brazil, with the Venezuelan side remaining uncontacted. While they maintain a hunter-gatherer society, they are currently experiencing contact with urbanized populations in Brazil. The human gut microbiota of traditional communities has become the subject of recent studies due to the Westernization of their diet and the introduction of antibiotics and other chemicals, which have affected microbial diversity in indigenous populations, thereby threatening their existence. In this study, we preliminarily characterized the diversity of the gut microbiota of the Yanomami, a hunter-gatherer society from the Amazon, experiencing contact with urbanized populations. Similarly, we compared their diversity with the population in Manaus, Amazonas. A metabarcoding approach of the 16 S rRNA gene was carried out on fecal samples. Differences were found between the two populations, particularly regarding the abundance of genera (e.g., Prevotella and Bacteroides) and the higher values of the phyla Bacteroidetes over Firmicutes, which were significant only in the Yanomami. Some bacteria were found exclusively in the Yanomami (Treponema and Succinivibrio). However, diversity was statistically equal between them. In conclusion, the composition of the Yanomami gut microbiota still maintains the profile characteristic of a community with a traditional lifestyle. However, our results suggest an underlying Westernization process of the Yanomami microbiota when compared with that of Manaus, which must be carefully monitored by authorities, as the loss of diversity can be a sign of growing danger to the health of the Yanomami.

20.
Infect Genet Evol ; 116: 105523, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940011

RESUMEN

Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.


Asunto(s)
Cannabis , Virus ARN , Cannabis/genética , Filogenia , Virus ARN/genética , Mitocondrias/genética , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA