Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 68(1): 103-115, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36264759

RESUMEN

Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Células Endoteliales/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Arteria Pulmonar/patología , Endotelio/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo
2.
Saudi Pharm J ; 30(8): 1065-1078, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36164575

RESUMEN

Mitochondria are double-membraned cytoplasmic organelles that are responsible for the production of energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell, depending on the function of that cell. Primary mitochondria disorder (PMD) is a clinically heterogeneous disease associated with germline mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes, and impairs mitochondrial structure and function. Mitochondrial dysfunction can be detected in early childhood and may be severe, progressive and often multi-systemic, involving a wide range of organs. Understanding epigenetic factors and pathways mutations can help pave the way for developing an effective cure. However, the lack of information about the disease (including age of onset, symptoms, clinical phenotype, morbidity and mortality), the limits of current preclinical models and the wide range of phenotypic presentations hamper the development of effective medicines. Although new therapeutic approaches have been introduced with encouraging preclinical and clinical outcomes, there is no definitive cure for PMD. This review highlights recent advances, particularly in children, in terms of etiology, pathophysiology, clinical diagnosis, molecular pathways and epigenetic alterations. Current therapeutic approaches, future advances and proposed new therapeutic plans will also be discussed.

3.
Saudi Pharm J ; 29(12): 1361-1373, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35002373

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a progressive lung dysfunction caused mainly by inhaling toxic particles and cigarette smoking (CS). The continuous exposure to ruinous molecules can lead to abnormal inflammatory responses, permanent damages to the respiratory system, and irreversible pathological changes. Other factors, such as genetics and aging, influence the development of COPD. In the last decade, accumulating evidence suggested that mitochondrial alteration, including mitochondrial DNA damage, increased mitochondrial reactive oxygen species (ROS), abnormal autophagy, and apoptosis, have been implicated in the pathogenesis of COPD. The alteration can also extend to epigenetics, namely DNA methylation, histone modification, and non-coding RNA. This review will discuss the recent progressions in COPD pathology, pathophysiology, and molecular pathways. More focus will be shed on mitochondrial and epigenetic variations related to COPD development and the role of nanomedicine as a potential tool for the prevention and treatment of this disease.

4.
Mol Ther Nucleic Acids ; 23: 142-153, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335799

RESUMEN

Circulating levels of endothelial miR-150 are reduced in pulmonary arterial hypertension (PAH) and act as an independent predictor of patient survival, but links between endothelial miR-150 and vascular dysfunction are not well understood. We studied the effects of endothelial miR-150 supplementation and inhibition in PAH mice and cells from patients with idiopathic PAH. The role of selected mediators of miR-150 identified by RNA sequencing was evaluated in vitro and in vivo. Endothelium-targeted miR-150 delivery prevented the disease in Sugen/hypoxia mice, while endothelial knockdown of miR-150 had adverse effects. miR-150 target genes revealed significant associations with PAH pathways, including proliferation, inflammation, and phospholipid signaling, with PTEN-like mitochondrial phosphatase (PTPMT1) most markedly altered. PTPMT1 reduced inflammation and apoptosis and improved mitochondrial function in human pulmonary endothelial cells and blood-derived endothelial colony-forming cells from idiopathic PAH. Beneficial effects of miR-150 in vitro and in vivo were linked with PTPMT1-dependent biosynthesis of mitochondrial phospholipid cardiolipin and reduced expression of pro-apoptotic, pro-inflammatory, and pro-fibrotic genes, including c-MYB, NOTCH3, transforming growth factor ß (TGF-ß), and Col1a1. In conclusion, we are the first to show that miR-150 supplementation attenuates pulmonary endothelial damage induced by vascular stresses and may be considered as a potential therapeutic strategy in PAH.

5.
Nat Commun ; 11(1): 1185, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132543

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homoeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here, we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodelling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homoeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signalling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling.


Asunto(s)
Terapia Genética/métodos , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/uso terapéutico , Hipertensión Arterial Pulmonar/terapia , Adulto , Anciano , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales , Exosomas/genética , Exosomas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/patología , Masculino , Ratones , MicroARNs/metabolismo , Persona de Mediana Edad , Mutación Missense , Cultivo Primario de Células , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/citología , Arteria Pulmonar/patología , Transducción de Señal/genética , Remodelación Vascular/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA