Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305352

RESUMEN

The incoming influenza A virus (IAV) genome must pass through two distinct barriers in order to establish infection in the cell: the plasma membrane and the nuclear membrane. A precise understanding of the challenges imposed by the nuclear barrier remains outstanding. Passage across is mediated by host karyopherins (KPNAs), which bind to the viral nucleoprotein (NP) via its N-terminal nuclear localization sequence (NLS). The binding affinity between the two molecules is low, but NP is present in a high copy number, which suggests that binding avidity plays a compensatory role during import. Using nanobody-based technology, we demonstrate that a high binding avidity is required for infection, though the absolute value differs between cell types and correlates with their relative susceptibility to infection. In addition, we demonstrate that increasing the affinity level caused a decrease in avidity requirements for some cell types but blocked infection in others. Finally, we show that genomes that become frustrated by low avidity and remain cytoplasmic trigger the type I interferon response. Based on these results, we conclude that IAV balances affinity and avidity considerations in order to overcome the nuclear barrier across a broad range of cell types. Furthermore, these results provide evidence to support the long-standing hypothesis that IAV's strategy of import and replication in the nucleus facilitates immune evasion.IMPORTANCE We used intracellular nanobodies to block influenza virus infection at the step prior to nuclear import of its ribonucleoproteins. By doing so, we were able to answer an important but outstanding question that could not be addressed with conventional tools: how many of the ∼500 available NLS motifs are needed to establish infection? Furthermore, by controlling the subcellular localization of the incoming viral ribonucleoproteins and measuring the cell's antiviral response, we were able to provide direct evidence for the long-standing hypothesis that influenza virus exploits nuclear localization to delay activation of the innate immune response.


Asunto(s)
Virus de la Influenza A/patogenicidad , Interferón Tipo I/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Anticuerpos de Dominio Único/metabolismo , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Cricetinae , Perros , Células HEK293 , Células HeLa , Humanos , Evasión Inmune , Virus de la Influenza A/genética , Virus de la Influenza A/inmunología , Gripe Humana , Carioferinas , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae
2.
MethodsX ; 8: 101419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34430314

RESUMEN

Successful use of the CRISPR-Cas9 system for gene manipulation relies on identifying effective and efficient guide RNA sequences (gRNAs). When the goal is to create transgenic animal/rodent models by knocking-in desired sequences using homology-directed repair (HDR), selecting effective guides becomes even more critical to minimize developmental time and resources. Currently, validation experiments for gRNAs for generating rat models are carried out using immortalized rat cells. However, there are several limitations with using such cell lines, including ploidy of the genome, non-predictive transfection efficiency, and the ability to identify gene modifications efficiently within diverse cell populations. Since embryos are authentic representatives of live animals compared to cell lines, validating CRISPR guides for their nuclease activity in freshly isolated embryos will provide greater accuracy of in vivo gene editing efficiency. In contrast to microinjections, delivery by electroporation is a more accessible method that can be simple and does not require special skills and equipment. We demonstrate an accessible workflow to either delete or edit target genes in vivo in rats using the efficient editing of a human mutation in alpha7 nicotinic acetylcholine receptor subunit (CHRNA7) ortholog using electroporation as a delivery method for CRISPR-Cas9 ribonucleoprotein complexes in rat embryos.•Upon identifying CRISPR targets at the desired genetic alteration site, we designed homologydriven repair (HDR) templates for effective and easy identification of gene editing by Restriction Fragment Length Polymorphism (RFLP).•Cultured rat embryos can be genotyped to assess CRISPR activity as seen by either presence of indels resulting from NHEJ or knock-in of repair template resulting from homology driven repair.•Heteroduplex mobility assay (HMA) and Restriction Fragment Length Polymorphism (RFLP) of PCR products can be performed reliably and reproducibly at a low-cost.

3.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33872353

RESUMEN

The free-living nematode Caenorhabditis elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but the expression in Escherichia coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high-material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals' germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C. elegans system.


Asunto(s)
Caenorhabditis elegans , Ácidos Nucleicos , Animales , Caenorhabditis elegans/genética , Interferencia de ARN , ARN Bicatenario/genética , Electroporación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA