RESUMEN
Yearly vaccination with the trivalent inactivated influenza vaccine (TIV) is recommended, since current vaccines induce little cross neutralization to divergent influenza strains. Whether the TIV can induce antibody-dependent cellular cytotoxicity (ADCC) responses that can cross-recognize divergent influenza virus strains is unknown. We immunized 6 influenza-naive pigtail macaques twice with the 2011-2012 season TIV and then challenged the macaques, along with 12 control macaques, serially with H1N1 and H3N2 viruses. We measured ADCC responses in plasma to a panel of H1 and H3 hemagglutinin (HA) proteins and influenza virus-specific CD8 T cell (CTL) responses using a sensitive major histocompatibility complex (MHC) tetramer reagent. The TIV was weakly immunogenic and, although binding antibodies were detected by enzyme-linked immunosorbent assay (ELISA), did not induce detectable influenza virus-specific ADCC or CTL responses. The H1N1 challenge elicited robust ADCC to both homologous and heterologous H1 HA proteins, but not influenza virus HA proteins from different subtypes (H2 to H7). There was no anamnestic influenza virus-specific ADCC or CTL response in vaccinated animals. The subsequent H3N2 challenge did not induce or boost ADCC either to H1 HA proteins or to divergent H3 proteins but did boost CTL responses. ADCC or CTL responses were not induced by TIV vaccination in influenza-naive macaques. There was a marked difference in the ability of infection compared to that of vaccination to induce cross-reactive ADCC and CTL responses. Improved vaccination strategies are needed to induce broad-based ADCC immunity to influenza.
Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza B/genética , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Gripe Humana/virología , Macaca , Masculino , VacunaciónRESUMEN
BACKGROUND: During the 2009 pandemic of influenza A virus subtype H1N1 (A[H1N1]pdm09) infection, older individuals were partially protected from severe disease. It is not known whether preexisting antibodies with effector functions such as antibody-dependent cellular cytotoxicity (ADCC) contributed to the immunity observed. METHODS: We tested serum specimens obtained from 182 individuals aged 1-72 years that were collected either immediately before or after the A(H1N1)pdm09 pandemic for ADCC antibodies to the A(H1N1)pdm09 hemagglutinin (HA) protein. RESULTS: A(H1N1)pdm09 HA-specific ADCC antibodies were detected in almost all individuals aged >45 years (28/31 subjects) before the 2009 A(H1N1) pandemic. Conversely, only approximately half of the individuals aged 1-14 years (11/31) and 15-45 years (17/31) had cross-reactive ADCC antibodies before the 2009 A(H1N1) pandemic. The A(H1N1)pdm09-specific ADCC antibodies were able to efficiently mediate the killing of influenza virus-infected respiratory epithelial cells. Further, subjects >45 years of age had higher ADCC titers to a range of seasonal H1N1 HA proteins, including from the 1918 virus, compared with younger individuals. CONCLUSIONS: ADCC antibodies may have contributed to the protection exhibited in older individuals during the 2009 A(H1N1) pandemic. This work has significant implications for improved vaccination strategies for future influenza pandemics.
Asunto(s)
Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Femenino , Humanos , Lactante , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Lipid nanoparticle mRNA vaccines are an exciting but emerging technology used in humans. There is limited understanding of the factors that influence their biodistribution and immunogenicity. Antibodies to poly(ethylene glycol) (PEG), which is on the surface of the lipid nanoparticle, are detectable in humans and boosted by human mRNA vaccination. We hypothesized that PEG-specific antibodies could increase the clearance of mRNA vaccines. To test this, we developed methods to quantify both the vaccine mRNA and ionizable lipid in frequent serial blood samples from 19 subjects receiving Moderna SPIKEVAX mRNA booster immunization. Both the vaccine mRNA and ionizable lipid peaked in blood 1-2 days post vaccination (median peak level 0.19 and 3.22 ng mL-1, respectively). The vaccine mRNA was detectable and quantifiable up to 14-15 days postvaccination in 37% of subjects. We measured the proportion of vaccine mRNA that was relatively intact in blood over time and found that the decay kinetics of the intact mRNA and ionizable lipid were identical, suggesting the intact lipid nanoparticle recirculates in blood. However, the decay rates of mRNA and ionizable lipids did not correlate with baseline levels of PEG-specific antibodies. Interestingly, the magnitude of mRNA and ionizable lipid detected in blood did correlate with the boost in the level of PEG antibodies. Furthermore, the ability of a subject's monocytes to phagocytose lipid nanoparticles was inversely related to the rise in PEG antibodies. This suggests that the circulation of mRNA lipid nanoparticles into the blood and their clearance by phagocytes influence the PEG immunogenicity of the mRNA vaccines. Overall, this work defines the pharmacokinetics of lipid nanoparticle mRNA vaccine components in human blood after intramuscular injection and the factors that influence these processes. These insights should be valuable in improving the future safety and efficacy of lipid nanoparticle mRNA vaccines and therapeutics.
Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Humanos , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , Vacunas de ARNm/inmunología , Lípidos/química , Femenino , Adulto , ARN Mensajero/inmunología , ARN Mensajero/genética , Masculino , Polietilenglicoles/química , COVID-19/prevención & control , COVID-19/inmunología , Persona de Mediana Edad , Distribución Tisular , LiposomasRESUMEN
While gaining interest as treatment for cancer and infectious disease, the clinical efficacy of Vγ9Vδ2 T cell-based immunotherapeutics has to date been limited. An improved understanding of γδ T cell heterogeneity across lymphoid and non-lymphoid tissues, before and after pharmacological expansion, is required. Here, we describe the phenotype and tissue distribution of Vγ9Vδ2 T cells at steady state and following in vivo pharmacological expansion in pigtail macaques. Intravenous phosphoantigen administration with subcutaneous rhIL-2 drove robust expansion of Vγ9Vδ2 T cells in blood and pulmonary mucosa, while expansion was confined to the pulmonary mucosa following intratracheal antigen administration. Peripheral blood Vγ9Vδ2 T cell expansion was polyclonal, and associated with a significant loss of CCR6 expression due to IL-2-mediated receptor downregulation. Overall, we show the tissue distribution and phenotype of in vivo pharmacologically expanded Vγ9Vδ2 T cells can be altered based on the antigen administration route, with implications for tissue trafficking and the clinical efficacy of Vγ9Vδ2 T cell immunotherapeutics.
RESUMEN
Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio-nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle-immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend-immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle-immune cell interactions, whereas the MS@PEG particle-cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
Asunto(s)
Polietilenglicoles , Dióxido de Silicio , Comunicación Celular , Humanos , Peso Molecular , Monocitos , Tamaño de la PartículaRESUMEN
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Virus de la Viruela de las Aves de Corral/inmunología , Macaca nemestrina/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra el SIDA/inmunología , Administración Intranasal/métodos , Animales , Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunidad Mucosa/inmunología , Inmunización Secundaria/métodos , Memoria Inmunológica/inmunología , Inyecciones Intramusculares/métodos , Macaca nemestrina/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Vacunación/métodos , Vaccinia/inmunología , Virus Vaccinia/inmunologíaRESUMEN
The low fidelity of HIV replication facilitates immune and drug escape. Some reverse transcriptase (RT) inhibitor drug-resistance mutations increase RT fidelity in biochemical assays but their effect during viral replication is unclear. We investigated the effect of RT mutations K65R, Q151N and V148I on SIV replication and fidelity in vitro, along with SIV replication in pigtailed macaques. SIVmac239-K65R and SIVmac239-V148I viruses had reduced replication capacity compared to wild-type SIVmac239. Direct virus competition assays demonstrated a rank order of wild-type>K65R>V148I mutants in terms of viral fitness. In single round in vitro-replication assays, SIVmac239-K65R demonstrated significantly higher fidelity than wild-type, and rapidly reverted to wild-type following infection of macaques. In contrast, SIVmac239-Q151N was replication incompetent in vitro and in pigtailed macaques. Thus, we showed that RT mutants, and specifically the common K65R drug-resistance mutation, had impaired replication capacity and higher fidelity. These results have implications for the pathogenesis of drug-resistant HIV.
Asunto(s)
Farmacorresistencia Viral/genética , ADN Polimerasa Dirigida por ARN/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Proteínas Virales/genética , Replicación Viral/genética , Animales , Secuencia de Bases , Línea Celular , Células HEK293 , Humanos , Macaca nemestrina , Masculino , Datos de Secuencia Molecular , Mutación , Plásmidos/química , Plásmidos/inmunología , ADN Polimerasa Dirigida por ARN/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Carga Viral , Proteínas Virales/inmunologíaRESUMEN
The testis is a site of immune privilege in rodents, and there is evidence that T cell responses are also suppressed in the primate testis. Local immunosuppression is a potential mechanism for HIV persistence in tissue reservoirs that few studies have examined. The response of the pig-tailed macaque testis to SIVmac239 infection was characterized to test this possibility. Testes were surgically removed during early-chronic (10 wk) and late-chronic (24-30 wk) SIV infection in 4 animals and compared with those from 7 uninfected animals. SIV infection caused only minor disruption to the seminiferous epithelium without marked evidence of inflammation or consistent changes in total intratesticular leukocyte numbers. Infection also led to an increase in the relative proportion of testicular effector memory CD8(+) T cell numbers and a corresponding reduction in central memory CD4(+) T cells. A decrease in the relative proportion of resident-type CD163(+) macrophages and DCs was also observed. SIV-specific CD8(+) T cells were detectable in the testis, 10-11 wk after infection by staining with SIV Gag-specific or Tat-specific MHC-I tetramers. However, testicular CD8(+) T cells from the infected animals had suppressed cytokine responses to mitogen activation. These results support the possibility that local immunosuppression in the testis may be restricting the ability of T cells to respond to SIV or HIV infection. Local immunosuppression in the testis may be an underexplored mechanism allowing HIV persistence.