Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 117(23): 237002, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982627

RESUMEN

We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

2.
Phys Rev Lett ; 112(19): 196601, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24877955

RESUMEN

We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012). The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν = 0 stripe at the PN interface.

3.
Phys Rev Lett ; 110(21): 216601, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745906

RESUMEN

The fate of the low-temperature conductance at the charge-neutrality (Dirac) point in a single sheet of graphene on boron nitride is investigated down to 20 mK. As the temperature is lowered, the peak resistivity diverges with a power-law behavior and becomes as high as several megohms per square at the lowest temperature, in contrast with the commonly observed saturation of the conductivity. As a perpendicular magnetic field is applied, our device remains insulating and directly transitions to the broken-valley-symmetry, ν=0 quantum Hall state, indicating that the insulating behavior we observe at zero magnetic field is a result of broken valley symmetry. Finally we discuss the possible origins of this effect.

4.
Science ; 352(6288): 966-9, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27199424

RESUMEN

A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.

5.
Nat Commun ; 6: 5838, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25562690

RESUMEN

The electronic properties of graphene are described by a Dirac Hamiltonian with a four-fold symmetry of spin and valley. This symmetry may yield novel fractional quantum Hall (FQH) states at high magnetic field depending on the relative strength of symmetry-breaking interactions. However, observing such states in transport remains challenging in graphene, as they are easily destroyed by disorder. In this work, we observe in the first two Landau levels the two-flux composite-fermion sequences of FQH states between each integer filling factor. In particular, the odd-numerator fractions appear between filling factors 1 and 2, suggesting a broken-valley symmetry, consistent with our observation of a gap at charge neutrality and zero field. Contrary to our expectations, the evolution of gaps in a parallel magnetic field suggests that states in the first Landau level are not spin-polarized even up to very large out-of-plane fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA