Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Langmuir ; 40(4): 2050-2063, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38243903

RESUMEN

The amphiphilic heterograft copolymers bearing biocompatible/biodegradable grafts [poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline)-g-poly(d-l-lactic acid)/poly(2-ethyl-2-oxazoline)] were synthesized successfully by the combination of cationic ring-opening polymerization and click chemistry via the ⟨"grafting to"⟩ approach. The challenge of this synthesis was to graft together hydrophobic and hydrophilic chains on a hydrophilic platform based on PMeOx. The efficiency of grafting depends on the chemical nature of the grafts and of the length of the macromolecular chains. The self-assembly of these polymers in aqueous media was investigated by DLS, cryo-TEM, and SANS. The results demonstrated that different morphologies were obtained from nanospheres and vesicles to filaments depending on the hydrophilic weight ratio in the heterograft copolymer varying from 0.38 until 0.84. As poly(2-ethyl-2-oxazoline) is known to be thermoresponsive, the influence of temperature rise on the nanoassembly stability was studied in water and in a physiological medium. SANS and DLS measurements during a temperature ramp allowed to show that nanoassemblies start to self-assemble in "raspberry like" primary structures at 50 °C, and these structures grow and get denser as the temperature is increased further. These amphiphilic heterograft copolymers may include hydrophobic drugs and should find important applications for biomedical applications which require stealth properties.

2.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298812

RESUMEN

Here, we describe the behavior of mixtures of stearic acid (SA) and its hydroxylated counterpart 12-hydroxystearic acid (12-HSA) in aqueous mixtures at room temperature as a function of the 12-HSA/SA mole ratio R. The morphologies of the self-assembled aggregates are obtained through a multi-structural approach that combines confocal and cryo-TEM microscopies with small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS) measurements, coupled with rheology measurements. Fatty acids are solubilized by an excess of ethanolamine counterions, so that their heads are negatively charged. A clear trend towards partitioning between the two types of fatty acids is observed, presumably driven by the favorable formation of a H-bond network between hydroxyl OH function on the 12th carbon. For all R, the self-assembled structures are locally lamellar, with bilayers composed of crystallized and strongly interdigitated fatty acids. At high R, multilamellar tubes are formed. The doping via a low amount of SA molecules slightly modifies the dimensions of the tubes and decreases the bilayer rigidity. The solutions have a gel-like behavior. At intermediate R, tubes coexist in solution with helical ribbons. At low R, local partitioning also occurs, and the architecture of the self-assemblies associates the two morphologies of the pure fatty acids systems: they are faceted objects with planar domains enriched in SA molecules, capped with curved domains enriched in 12-HSA molecules. The rigidity of the bilayers is strongly increased, as well their storage modulus. The solutions remain, however, viscous fluids in this regime.


Asunto(s)
Ácidos Grasos , Ácidos Esteáricos , Temperatura , Ácidos Esteáricos/química , Ácidos Grasos/química , Microscopía , Micelas
3.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687150

RESUMEN

This study examines the structures of soft surfactant-based biomaterials which can be tuned by temperature. More precisely, investigated here is the behavior of stearic acid (SA) and 12-hydroxystearic acid (12-HSA) aqueous mixtures as a function of temperature and the 12-HSA/SA molar ratio (R). Whatever R is, the system exhibits a morphological transition at a given threshold temperature, from multilamellar self-assemblies at low temperature to small micelles at high temperature, as shown by a combination of transmittance measurements, Wide Angle X-ray diffraction (WAXS), small angle neutron scattering (SANS), and differential scanning calorimetry (DSC) experiments. The precise determination of the threshold temperature, which ranges between 20 °C and 50 °C depending on R, allows for the construction of the whole phase diagram of the system as a function of R. At high temperature, the micelles that are formed are oblate for pure SA solutions (R = 0) and prolate for pure 12-HSA solutions (R = 1). In the case of mixtures, there is a progressive continuous transition from oblate to prolate shapes when increasing R, with micelles that are almost purely spherical for R = 0.33.

4.
Langmuir ; 33(32): 8052-8061, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28738151

RESUMEN

The effect of headgroup variation on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[6]arene (SCX6) and cationic surfactant possessing tetradecyl substituent was studied in aqueous solutions at pH 7. When the surfactant contained hydrophilic trimethylammonium, pyridinium, or 1-methylimidazolium headgroup, highly reversible temperature-responsive nanoparticle-supramolecular micelle transformation could be attained at appropriately chosen component mixing ratios and NaCl concentrations. In these cases, the substantial negative molar heat capacity change (ΔCp) rendered nanoparticle formation strongly endothermic at low temperature, whereas the assembly to supramolecular micelle was always accompanied by enthalpy gain. The ΔCp values became less negative when the charge density and the hydrophilic character of the surfactant headgroup diminished. The association of the more hydrophobic 6-methoxyquinolinium and quinolinium surfactants with SCX6 did not lead to supramolecular micelle formation because the self-assembly into nanoparticles was highly exothermic.

5.
Langmuir ; 33(11): 2849-2860, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28248524

RESUMEN

Stealth nanocarriers are a promising technology for the treatment of diseases. However, the preparation and characterization of well-defined soft nanoparticulate systems remain challenging. Here we describe a platform of amphiphilic graft copolymers leading to nanoparticles with multiple morphologies and the role of the hydrophilic backbone in their interaction with a model protein. The amphiphilic graft copolymers platform was composed of hydrophilic backbone poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline) (P(MeOx-co-PentOx)), prepared via cationic ring-opening polymerization. Hydrophobic poly(d,l-lactide) (PLA) chains were grafted on the backbone via Huisgen 1,3-dipolar cycloaddition. The "click" copper-catalyzed cycloaddition reactions of azides with alkynes (CuAAC) were successfully carried out, and a series of amphiphilic copolymers were prepared containing a backbone with a number-average molecular weight of 14.2 × 103 g mol-1 and different hydrophobic PLA grafts with various molecular weights (2.8 × 103-12.4 × 103 g mol-1). These original architectures of copolymers, when nanoprecipitated in water, the backbone-selective solvent, allowed us to obtain various structures of nanoparticles with a hydrodynamic diameter in the range of 65-99 nm. More interestingly, a plurality of morphologies going from unilamellar, multilamellar, and large compound vesicles to core-shell nanoparticles and depending on the PLA molecular weights were evidenced by combining cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) studies. A first evaluation of their stealthiness by studying the stability and the interaction of these nano-objects with a model protein revealed the role played by the P(MeOx-co-PentOx) in these interactions, demonstrating the utility of this amphiphilic graft copolymers platform with well-defined architectures for the design of nanocarriers in drug delivery applications.

6.
Langmuir ; 32(41): 10651-10658, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27660853

RESUMEN

The effect of macrocycle size on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[n]arene and 1-methyl-3-tetradecylimidazolium (C14mim+) was studied in aqueous solutions at pH 7. When the cavitand contained four sulfonatophenol units (SCX4), formation of spherical nanoparticles (NPs) was observed. By contrast, both supramolecular micelle (SM) and NP formation could be attained in the presence of NaCl when the larger, more flexible 4-sulfonatocalix[8]arene (SCX8) served as the host compound. The SCX8-promoted self-assembly into the SM was enthalpically more favorable than the NP production, but the molar heat capacity changes in the two processes barely differed. An addition of 50 mM NaCl significantly increased the enthalpy of C14mim+-SCX8 NP formation, thereby making the self-organization into the SM more favorable. The transformation of SM into NP at high temperatures was due to the substantial entropic contribution to the driving force behind the NP formation. The critical micelle concentration (cmc) and the local polarity in the headgroup domain were considerably lower for the SM compared with those of the conventional C14mim+Br- micelle.

7.
Langmuir ; 31(24): 6655-62, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26034843

RESUMEN

The effect of temperature and NaCl concentration variations on the self-assembly of 1-methyl-3-tetradecylimidazolium (C14mim(+)) and 4-sulfonatocalix[6]arene (SCX6) was studied by dynamic light scattering and isothermal calorimetric methods at pH 7. Inclusion complex formation promoted the self-assembly to spherical nanoparticles (NP), which transformed to supramolecular micelles (SM) in the presence of NaCl. Highly reversible, temperature-responsive behavior was observed, and the conditions of the NP-SM transition could be tuned by the alteration of C14mim(+):SCX6 mixing ratio and NaCl concentration. The association to SM was always exothermic with enthalpy independent of the amount of NaCl. In contrast, NPs were produced in endothermic process at low temperature, and the enthalpy change became less favorable upon increase in NaCl concentration. The NP formation was accompanied by negative molar heat capacity change, which further diminished when NaCl concentration was raised.

8.
Beilstein J Org Chem ; 11: 147-54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25670998

RESUMEN

Novel (S)-camptothecin-dextran polymers were obtained by "click" grafting of azide-modified (S)-camptothecin and alkyne-modified dextrans. Two series based on 10 kDa and 70 kDa dextrans were prepared with a degree of substitution of (S)-camptothecin between 3.1 and 10.2%. The binding properties with ß-cyclodextrin and ß-cyclodextrin polymers were measured by isothermal titration calorimetry and fluorescence spectroscopy, showing no binding with ß-cyclodextrin but high binding with ß-cyclodextrin polymers. In aqueous solution nanoparticles were formed from association between the (S)-camptothecin-dextran polymers and the ß-cyclodextrin polymers.

9.
Photochem Photobiol Sci ; 13(3): 499-508, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346633

RESUMEN

Inclusion of 6-methoxy-1-methylquinolinium (C1MQ) in the cavity of cucurbit[7]uril (CB7) was studied by absorption, fluorescence, NMR and isothermal calorimetric methods in aqueous solution at 298 K. The free C1MQ exhibited dual-exponential fluorescence decay kinetics due to the two torsional isomers differing in the orientation of the methoxy moiety relative to the heterocyclic ring. The enthalpy-driven encapsulation of the heterocycle in CB7 led to a very stable 1 : 1 complex with a binding constant of (2.0 ± 0.4) × 10(6) M(-1). The rate of C1MQ-CB7 complex dissociation was found to be comparable to the NMR timescale. Because the methoxy moiety is oriented outward from the host, its s-cis-s-trans isomerization is slightly affected by the confinement. Inclusion complex formation significantly slowed down the photoinduced electron transfer from I(-) and N3(-) to the singlet-excited C1MQ, but did not preclude the reaction because long distance electron transfer occurred through the wall of the CB7 macrocycle. Due to the large difference in the quenching rate constant for free and encapsulated forms, C1MQ is an excellent probe for the study of the inclusion of nonfluorescent compounds in CB7 in the presence of Cl(-) or Br(-).


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Compuestos de Quinolinio/química , Absorción , Aniones/química , Calorimetría , Electrones , Fluorescencia , Isomerismo , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Análisis Espectral , Termodinámica , Factores de Tiempo , Agua/química
10.
Langmuir ; 29(25): 7682-8, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23691918

RESUMEN

The interaction of 4-sulfonatocalix[6]arene (SCX6) macrocycle with 1-alkyl-3-methylimidazolium type of ionic liquids possessing dodecyl, tetradecyl, or hexadecyl substituent was studied in aqueous solution at 298 K. Host-guest complexation promoted the spontaneous self-assembly into nanoparticles of 7:1 ionic liquid:SCX6 stoichiometry. Positively charged and stable nanoparticles were produced in solutions of 7-200-fold excess of ionic liquid as compared to the amount of SCX6. The negatively charged nanoparticles formed in solutions having 2-7 ionic liquid:SCX6 molar ratios evolved into larger species. The stability of the nanoparticles increased with the lengthening of aliphatic chain of the ionic liquid. Cryo-TEM experiments showed dense particles generally with spherical shape and multilayered structure, which has been confirmed by small-angle neutron scattering.


Asunto(s)
Líquidos Iónicos/química , Compuestos Macrocíclicos/química , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión
11.
Langmuir ; 28(20): 7859-71, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22512344

RESUMEN

The segmental dynamics of poly(ethylene glycol) (PEG) chains adsorbed on the clay platelets within nanocomposite PEG/Laponite hydrogels was investigated over the tens of microseconds time scale, using combined solution and solid-state NMR approaches. In a first step, the time evolution of the molecular mobility displayed by the PEG chains following the addition to a Laponite aqueous dispersion was monitored during the aggregation of the clay disks and the hydrogel formation, by means of (1)H solution-state NMR. Part of the PEG repeat units were found to get strongly constrained during the gelation process. Comparisons between this time evolution of the PEG local dynamics in the PEG/Laponite/water systems and the increase of the macroscopic storage shear modulus, mainly governed by the assembling of the Laponite disks, indicate that the slowing down of the segmental motions arises from adsorbed PEG repeat units or chain portions strongly constrained between aggregated clay layers. In a second step, after completion of the gelation process, the molecular motions of the adsorbed PEG chains were probed by (1)H solid-state NMR spectroscopy. (1)H double-quantum experiments indicate that the adsorbed PEG repeat units, though reported to be frozen over a few tens of nanoseconds, still display significant reorientational motions over the tens of microseconds time scale. Using a comparison with a model system of amorphized PEG chains, the characteristic frequency of these segmental motions was found to range between 78.0 kHz and 100.7 MHz at 300 K. Interestingly, at this temperature, the level of reorientational motions detected for these adsorbed PEG chain portions was found to be as restricted as the one of bulk amorphous PEG chains, cooled at a slightly lower temperature (about 290 K).

12.
Biomacromolecules ; 13(2): 528-34, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22235992

RESUMEN

The main goal of this work was to develop two strategies for stabilization of nanoassemblies made of ß-cyclodextrin polymer and amphiphilic dextran associated through host-guest complexes. The first strategy was to coat the nanoassemblies with a dextran derivative bearing adamantyl anchoring groups and hydrophilic poly(ethylene oxide-co-propylene oxide) side chains to increase the steric repulsion between the nanoassemblies. The second strategy developed was to post-reticulate the nanoassemblies upon UV irradiation. Photo-cross-linkable nanoassemblies have been prepared from new host or guest polymers bearing allylether or methacrylate groups. The modified nanoassemblies have been characterized by dynamic light scattering as a function of time and for various salt and competitor concentrations. The results of the first strategy show an improvement of shelf stability and resistance at relatively low concentrations of competitors. The second strategy is the most efficient in providing good shelf stability, much larger than with the first strategy, together with a large resistance to dissociation in presence of competitors.


Asunto(s)
Celulosa/química , Ciclodextrinas/química , Dextranos/química , Polietilenos/química , Polipropilenos/química , Óxido de Etileno/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Metacrilatos/química , Estructura Molecular , Nanoestructuras , Tamaño de la Partícula , Tensoactivos/química , Rayos Ultravioleta , Agua
13.
Pharm Res ; 29(2): 384-96, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21847694

RESUMEN

PURPOSE: Neutral ß-cyclodextrin polymers (polyßCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyßCD/cationic Ada-based delivery system. METHODS: We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyßCD and Ada derivatives was evaluated by fluorimetric titration. RESULTS: Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyßCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. CONCLUSION: We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.


Asunto(s)
Adamantano/análogos & derivados , Celulosa/química , Ciclodextrinas/química , ADN/administración & dosificación , Imidazoles/química , Plásmidos/administración & dosificación , Transfección , ADN/genética , Células HEK293 , Células Hep G2 , Humanos , Plásmidos/genética
14.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36365699

RESUMEN

Poly (methacrylic acid) (PMAA) solutions are known to exhibit a lower critical solution temperature (LCST). A temperature-composition phase diagram of PMAA has been constructed by standard cloud point determination through transmittance measurements, and also by studying the steady states reached under phase separation. This allows us to reconstruct the binodal curve describing the phase behavior of PMAA for both low and high concentration regimes, and to determine accurately the LCST temperature. In a second step, the structures formed following a temperature jump above the cloud point and their evolution in time have been investigated at the nanoscale using small angle neutron scattering (SANS). This approach shows that the formation of phase-separated nanostructures is a slow process, requiring more than 12 h. The formed structures are then shown to depend on the amplitude of the temperature jump above the cloud point. An original mechanism of phase separation is identified in the semi-dilute regime. The growth of micrometric-size droplets with an inner structure displaying the rheological properties of a gel leads to the formation of a percolating network which hinders the influence of gravity. Such a result can explain the slow kinetics of the PMAA LCST transition.

15.
Int J Pharm ; 592: 119994, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33127487

RESUMEN

This study aims to design and characterize the layer-by-layer assembly of core-corona nanoarchitecture for novel surface-modified solid lipid nanoparticles. Oppositely charged ß-cyclodextrin polymers were used to build corona structure onto lipid core, and the particle size, polydispersity index, and zeta potential of SLN with polymer layers were evaluated. Morphology of surface-modified SLN was identified using TEM. The effect of polymer coating on drug release pattern was investigated by in-vitro release studies. The biocompatibility of the novel SLN systems was assessed on various healty cell lines using in vitro cytotoxicity assay. The presence of the oppositely charged polymer layers was found to be effective on alteration of zeta potential from negative to positive values and an increased surface charge density was achieved in comparison to core SLN. The results also revealed that the drug release is mainly controlled by diffusion and ß-cyclodextrin polymers could enhance the slow/controlled release of drug. Cytotoxicity assay results suggested that the novel, hierarchical core-corona structured SLNs don't have cytotoxic effects on healthy cells and can be safely used as drug carriers. Overall, the layer-by-layer assembly of ß-cyclodextrin polymers is promising for designing surface-modified nanoarchitectures of lipid nanoparticles that may be applied via many administration routes.


Asunto(s)
Nanopartículas , beta-Ciclodextrinas , Portadores de Fármacos , Lípidos , Tamaño de la Partícula , Polímeros
16.
Biomacromolecules ; 11(7): 1710-5, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20553039

RESUMEN

Three series of novel water-soluble beta-cyclodextrin-dextran polymers have been prepared by "click" chemistry. The polymers were synthesized from alkyne-modified dextrans (AMDs) onto which mono-6-O-deoxy-monoazido-betaCD (N3betaCD) was grafted by a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polymers have been characterized by NMR spectroscopy and size exclusion chromatography (SEC). The binding properties have been characterized by isothermal titration calorimetry (ITC) and show excellent accessibility of the betaCDs.


Asunto(s)
Dextranos/química , Polímeros/síntesis química , beta-Ciclodextrinas/química , Calorimetría , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Métodos , Fenómenos Químicos Orgánicos
17.
Biomacromolecules ; 10(12): 3283-9, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19817351

RESUMEN

Associative networks have been elaborated by mixing in aqueous media a cyclodextrin polymer to a dextran bearing adamantyl groups. The two polymers interact mainly via inclusion complexes between adamantyl groups and cyclodextrin cavities, as evidenced by the high complexation constants determined by isothermal titration microcalorimetry (approximately 10(4) L mol(-1)). Additional interaction mechanisms participating in the strength of the network, mainly hydrogen bonding and electrostatic interactions, are sensitive to the pH and ionic strength of the medium, as shown by pH-dependent rheological properties. The loading and release of an apolar model drug, benzophenone, has been studied at two pH values and different cyclodextrin polymer content. Slow releases have been obtained (10-12 days) with slower kinetics at pH 2 than at pH 7. Analysis of the experiments at pH 7 shows that drug release is controlled both by diffusion in the network and by inclusion complex interactions with cyclodextrin cavities.


Asunto(s)
Dextranos/química , Sistemas de Liberación de Medicamentos , Modelos Químicos , beta-Ciclodextrinas/química , Benzofenonas/administración & dosificación , Benzofenonas/química , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Reología
18.
Biomacromolecules ; 10(3): 547-54, 2009 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-19173558

RESUMEN

The entrapment of two hydrophobic molecules, benzophenone and tamoxifen, into self-assembling cyclodextrin (CD)-based nanogels has been studied. These nanogels formed spontaneously upon the association of a hydrophobically modified dextran (MD) and a cyclodextrin polymer (pbetaCD). The interactions of benzophenone and tamoxifen with MD and pbetaCD were investigated using phase solubility studies, circular dichroism, and isothermal titration calorimetry. Both hydrophobic molecules were included into the CD cavities of the pbetaCD and were also solubilized by MD into its hydrophobic microdomains. We took advantage of these interactions to form benzophenone- and tamoxifen-loaded nanogels. The highest benzophenone loadings were obtained by solubilizing it in both pbetaCD and MD solutions before mixing them to form nanogels. These studies open new possibilities of applications of the nanogels, mainly in the cosmetic field, as sun screen carriers prepared by a simple "green" technology.


Asunto(s)
Benzofenonas/química , Dextranos/química , Polietilenglicoles/química , Polietileneimina/química , Tamoxifeno/química , beta-Ciclodextrinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanogeles , Solubilidad
19.
Carbohydr Polym ; 223: 115071, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31427015

RESUMEN

Methylimidazolium side groups were grafted via ether linkage to dextran and the self-assembly of these polymers with 4-sulfonato-calix[n]arenes (SCXn) was studied in aqueous solutions. Dynamic light scattering and zeta potential measurements revealed the mixing ratio ranges of the constituents where stable nanoparticles could be created. The macrocycle size of SCXn and the molecular mass of the polymer barely affected the nanoparticle diameter, but the lowering of the imidazolium degree of substitution substantially diminished the stability of the associates. The pH change from neutral to acidic also unfavourably influenced the self-organization owing mainly to the decrease of the SCXn charge. Cryogenic transmission electron microscopy images proved the spherical morphology of the nanoproducts in which the stoichiometry of the constituents was always close to the one corresponding to charge compensation. The flexible and positively charged dextran-chains are compacted by the polyanionic SCXn. Coralyne, a pharmacologically important alkaloid was efficiently embedded by self-assembly in the produced nanoparticles reaching 99% association efficiency.


Asunto(s)
Bencenosulfonatos/química , Calixarenos/química , Dextranos/química , Portadores de Fármacos/química , Imidazoles/química , Nanopartículas/química , Alcaloides de Berberina/química , Dextranos/síntesis química , Concentración de Iones de Hidrógeno , Imidazoles/síntesis química
20.
Carbohydr Polym ; 213: 403-410, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30879685

RESUMEN

Synthesis of novel host-guest functionalized polymers is presented along with structural characterization using small-angle X-ray scattering (SAXS) of the resulting nanoparticles. Mono-6-deoxy-mono-6-azidoßCD (N3ßCD) was grafted onto alkyne-functionalized pullulan via the "click" reaction copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) and an adamantane-modified dextran was prepared via the same strategy. Characterization of the polymers was carried out using nuclear magnetic resonance (NMR) spectroscopy, gel filtration chromatography (GFC), isothermal titration calorimetry (ITC) and SAXS. Nanoparticles were created via host-guest interactions between the well-defined ßCD-pullulans and adamantane-modified dextran. Characterization was carried out using dynamic light scattering (DLS) and SAXS, which revealed spherical particles in the sub-100 nm range. The studies shed light on the importance of molecular structure and host-guest ratio on crucial properties such as particle size, size distribution, porosity and stability towards aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA