Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glycoconj J ; 40(6): 621-630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921922

RESUMEN

In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Factor de Transcripción AP-1/genética , Regiones Promotoras Genéticas/genética , Activación Transcripcional
2.
Food Qual Prefer ; 88: 104101, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33071469

RESUMEN

Studies on consumers' purchase intentions have been one of the focuses in academia; however, the complex decision-making process in terms of purchase intentions on well-being foods have not been well researched. This study applied the Theory of Planned Behavior (TPB) model using its core constructs to predict consumers' purchase intentions of well-being food, namely Yak-sun. Questionnaires were gathered using a convenient sampling method for those who have experienced Yak-sun food in September of 2014. A total of 269 responses were used for data analysis. The results of the study aligned with past studies that supported the applicability of the TPB model. All constructs including attitude, subjective norms, and perceived behavioral control were found to have made a significant contribution to the prediction of intention to purchase Yak-sun food among Korean consumers. Perceived behavioral control showed the strongest influence on the behavioral intention of purchasing Yak-sun food. Based on the results, theoretical and practical implications were suggested.

3.
Glycoconj J ; 37(6): 681-690, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33108606

RESUMEN

In this study, we found that gene expression of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was specifically increased during differentiation of human MG-63 osteoblastic cells by serum starvation (SS). In parallel, a distinct increase in binding to SNA, the α2,6-sialyl-specific lectin, was observed in serum-starved cells, as demonstrated by FACS analysis. 5'-Rapid amplification of cDNA ends analysis demonstrated that the increase of hST6Gal I transcript by SS is mediated by P1 promoter. To elucidate transcriptional regulation of hST6Gal I in SS-induced MG-63 cells, we functionally characterized the P1 promoter region of the hST6Gal I gene. The 5'-deletion analysis of P1 promoter region revealed that the 189 bp upstream region of transcription start site is critical for transcriptional activity of hST6Gal I gene in SS-induced MG-63 cells. This region contains the predicted binding sites for several transcription factors, including AREB6, FOXP1, SIX3, HNF1, YY2, and MOK2. The mutagenesis analysis for these sites and chromatin immunoprecipitation assay demonstrated that the YY2 binding site at -98 to -77 was essential for the SS-induced hST6Gal I gene expression during differentiation of MG-63 cells.


Asunto(s)
Antígenos CD/genética , Diferenciación Celular/genética , Osteoblastos/citología , Sialiltransferasas/genética , Transcripción Genética , Proteínas de Unión al ADN/genética , Proteínas del Ojo/genética , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Proteína Homeobox SIX3
4.
J Phys Ther Sci ; 29(3): 384-386, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28356615

RESUMEN

[Purpose] This study examined the effect of belly dancing on the urinary incontinence-related muscles and vaginal pressure in middle-aged women to provide fundamental data for establishing an effective training program focusing on mitigating and preventing urinary incontinence. [Subjects and Methods] The subjects included 24 middle-aged women, who have been diagnosed with urinary incontinence. The subjects were randomly divided into two groups, viz. the experimental group (N=12) and control group (N=12). The experimental group underwent a belly dancing program focusing on pelvis moves. [Results] In the experimental group, the urinary incontinence-related muscle strength and vaginal pressure were increased, while the control group showed no significant change. [Conclusion] Belly dancing focusing on pelvis moves had a positive effect on the urinary incontinence-related muscle strength and vaginal pressure, suggesting that a recreational dance program focusing on pelvic exercise can be used to prevent and relieve the symptoms of urinary incontinence as a non-surgical treatment.

5.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38662302

RESUMEN

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proyección Neuronal , Animales , Proyección Neuronal/efectos de los fármacos , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neuritas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Flavonoides/farmacología , Flavonas/farmacología , Flavonas/química , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Línea Celular
6.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231294

RESUMEN

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Asunto(s)
Carcinoma , Neoplasias del Colon , Curcumina , Humanos , Curcumina/farmacología , Proteínas Quinasas Activadas por AMP , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Células HCT116 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ARN Mensajero/genética , Luciferasas
7.
PLoS One ; 18(11): e0293321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917776

RESUMEN

In this study, we have firstly elucidated that serum starvation augmented the levels of human GD3 synthase (hST8Sia I) gene and ganglioside GD3 expression as well as bone morphogenic protein-2 and osteocalcin expression during MG-63 cell differentiation using RT-PCR, qPCR, Western blot and immunofluorescence microscopy. To evaluate upregulation of hST8Sia I gene during MG-63 cell differentiation by serum starvation, promoter area of the hST8Sia I gene was functionally analyzed. Promoter analysis using luciferase reporter assay system harboring various constructs of the hST8Sia I gene proved that the cis-acting region at -1146/-646, which includes binding sites of the known transcription factors AP-1, CREB, c-Ets-1 and NF-κB, displays the highest level of promoter activity in response to serum starvation in MG-63 cells. The -731/-722 region, which contains the NF-κB binding site, was proved to be essential for expression of the hST8Sia I gene by serum starvation in MG-63 cells by site-directed mutagenesis, NF-κB inhibition, and chromatin immunoprecipitation (ChIP) assay. Knockdown of hST8Sia I using shRNA suggested that expressions of hST8Sia I and GD3 have no apparent effect on differentiation of MG-63 cells. Moreover, the transcriptional activation of hST8Sia I gene by serum starvation was strongly hindered by SB203580, a p38MAPK inhibitor in MG-63 cells. From these results, it has been suggested that transcription activity of hST8Sia I gene by serum starvation in human osteosarcoma MG-63 cells is regulated by p38MAPK/NF-κB signaling pathway.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , FN-kappa B , Humanos , Activación Transcripcional , Regulación hacia Arriba , FN-kappa B/metabolismo , Diferenciación Celular/genética , Expresión Génica
8.
Front Mol Biosci ; 9: 985648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172045

RESUMEN

Human N-acetylgalactosamine-α2,6-sialyltransferase (hST6GalNAc I) is the major enzyme involved in the biosynthesis of sialyl-Tn antigen (sTn), which is known to be expressed in more than 80% of human carcinomas and correlated with poor prognosis in cancer patients. Athough high expression of hST6GalNAc I is associated with augmented proliferation, migration and invasion in various cancer cells, transcriptional mechanism regulating hST6GalNAc I gene expression remains largely unknown. In this study, we found that hST6GalNAc I gene expression was markedly augmented by curcumin in HCT116 human colon carcinoma cells. To understand the molecular mechanism for the upregulation of hST6GalNAc I gene expression by curcumin in HCT116 cells, we first determined the transcriptional start site of hST6GalNAc I gene by 5'-RACE and cloned the proximal hST6GalNAc I 5'-flanking region spanning about 2 kb by PCR. Functional analysis of the hST6GalNAc I 5' flanking region of hST6GalNAc I by sequential 5'-deletion, transient transfection of reporter gene constructs and luciferase reporter assays showed that -378/-136 region is essential for maximal activation of transcription in response to curcumin in HCT 116 cells. This region includes putative binding sites for transcription factors c-Ets-1, NF-1, GATA-1, ER-α, YY1, and GR-α. ChIP analysis and site-directed mutagenesis demonstrated that estrogen receptor α (ER-α) binding site (nucleotides -248/-238) in this region is crucial for hST6GalNAc I gene transcription in response to curcumin stimulation in HCT116 cells. The transcription activity of hST6GalNAc I gene induced by curcumin in HCT116 cells was strongly inhibited by PKC inhibitor (Gö6983) and ERK inhibitor (U0126). These results suggest that curcumin-induced hST6GalNAc I gene expression in HCT116 cells is modulated through PKC/ERKs signal pathway.

9.
Exp Mol Med ; 51(9): 1-15, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562296

RESUMEN

Increased endothelial permeability, one of the earliest signs of endothelial dysfunction, is associated with the development of cardiovascular diseases such as hypertension and atherosclerosis. Recent studies suggest that the receptor for advanced glycation end products (RAGE) regulates endothelial permeability in inflammation. In the present study, we investigated the regulatory mechanism of RAGE in endothelial hyperpermeability induced by angiotensin II (Ang II), a well-known inflammatory mediator, and the potential therapeutic effect of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands. For in vitro studies, Ang II-treated human umbilical vein endothelial cells (HUVECs) were treated with siRNA specific to either RAGE or sRAGE to disrupt RAGE-mediated signaling. Endothelial permeability was estimated using FITC-labeled dextran 40 and a resistance meter. To evaluate intercellular junction disruption, VE-cadherin expression was examined by western blotting and immunocytochemistry. Ang II increased the expression of the Ang II type 1 receptor (AT1R) and RAGE, and this increase was inhibited by sRAGE. sRAGE prevented Ang II-induced VE-cadherin disruption in HUVECs. For in vivo studies, Ang II-infused, atherosclerosis-prone apolipoprotein E knockout mice were utilized. Endothelial permeability was assessed by Evans blue staining of the aorta. Ang II increased endothelial barrier permeability, and this effect was significantly attenuated by sRAGE. Our data demonstrate that blockade of RAGE signaling using sRAGE attenuates Ang II-induced endothelial barrier permeability in vitro and in vivo and indicate the therapeutic potential of sRAGE in controlling vascular permeability under pathological conditions.


Asunto(s)
Antígenos de Neoplasias/genética , Enfermedades Cardiovasculares/genética , Proteína HMGB1/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Receptor de Angiotensina Tipo 1/genética , Angiotensina II/genética , Animales , Antígenos CD/genética , Aorta/metabolismo , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Cadherinas/genética , Permeabilidad Capilar/genética , Enfermedades Cardiovasculares/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/genética , Hipertensión/patología , Inflamación/genética , Inflamación/patología , Ligandos , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA