Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 31(10): 1007-1023, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28611190

RESUMEN

Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated (CBLmut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.


Asunto(s)
Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/fisiopatología , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Citocinas/metabolismo , Estabilidad de Enzimas , Células Madre Hematopoyéticas/enzimología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Janus Quinasa 2/genética , Leucemia Mieloide Aguda/genética , Proteínas de la Membrana , Ratones , Mutación , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/genética , Transducción de Señal/genética , Ubiquitinación
2.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38194521

RESUMEN

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Asunto(s)
Betaína , Flavonoides , Estudio de Asociación del Genoma Completo , Lycium , Polimorfismo de Nucleótido Simple , Espermidina , Flavonoides/metabolismo , Lycium/genética , Lycium/metabolismo , Espermidina/metabolismo , Betaína/metabolismo , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética , Frutas/genética , Frutas/metabolismo
3.
Pancreatology ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38763786

RESUMEN

BACKGROUND & AIMS: Mutations in genes, including serine protease inhibitor Kazal-type 1 (SPINK1), influence disease progression following sentinel acute pancreatitis event (SAPE) attacks. SPINK1 c.194+2T > C intron mutation is one of the main mutants of SPINK1,which leads to the impairment of SPINK1 function by causing skipping of exon 3. Research on the pathogenesis of SAPE attacks would contribute to the understanding of the outcomes of acute pancreatitis. Therefore, the aim of the study was to clarify the role of SPINK1 c.194+2T > C mutation in the CP progression after an AP attack. METHODS: SAPE attacks were induced in wildtype and SPINK mutant (Spink1 c.194+2T > C) mice by cerulein injection. The mice were sacrificed at 24 h, 14 d, 28 d, and 42 d post-SAPE. Data-independent acquisition (DIA) proteomic analysis was performed for the identification of differentially expressed protein in the pancreatic tissues. Functional analyses were performed using THP-1 and HPSCs. RESULTS: Following SAPE attack, the Spink1 c.194+2T > C mutant mice exhibited a more severe acute pancreatitis phenotype within 24 h. In the chronic phase, the chronic pancreatitis phenotype was more severe in the Spink1 c.194+2T > C mutant mice after SAPE. Proteomic analysis revealed elevated IL-33 level in Spink1 c.194+2T > C mutant mice. Further in vitro analyses revealed that IL-33 induced M2 polarization of macrophages and activation of pancreatic stellate cells. CONCLUSION: Spink1 c.194+2T > C mutation plays an important role in the prognosis of patients following SAPE. Heterozygous Spink1 c.194+2T > C mutation promotes the development of chronic pancreatitis after an acute attack in mice through elevated IL-33 level and the induction of M2 polarization in coordination with pancreatic stellate cell activation.

4.
Langmuir ; 40(8): 4198-4206, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38355291

RESUMEN

Ultrashort-pulsed light-induced nanobubbles gain great attention in research fields such as cancer therapy, optical imaging, and drug delivery. However, the mechanism governing the nucleation and growth of nanobubbles remains controversial. In this study, a molecular dynamics simulation combined with near-field electromagnetic theory is developed to investigate the influence of the localized surface plasmon resonance effect (LSPR) on nanobubble nucleation under various time-length pulsed light and to reveal the energy transfer differences during the nanobubble generation process. The results show that when silver nanoparticles (NPs) are irradiated by a 5 ps shorter-pulsed light, the temperature of the water layer adjacent to the nanoparticle surpasses that of the nanoparticle itself and reaches the spinodal temperature. This leads to nanobubbles' rapid nucleation at approximately 20 ps, which is 80 ps earlier than that irradiated by a 100 ps longer-pulsed light. Comparatively, during longer-pulsed light irradiation, a slower increase in both the temperature of the silver NPs and the water layer results in delayed nucleation of nanobubbles. Therefore, the plasmonic nanobubbles (PNBs) were observed around in 74 and 100 ps when irradiated by 50 and 100 ps longer-pulsed light, respectively. Moreover, the result indicates that the LSPR-induced enhanced electric field by shorter-pulsed light (5 ps) is 2.1 × 1010 V/m, which can accelerate the motion of water molecules surrounding silver NPs, resulting in rapid generation of nanobubbles. However, the intensities of the resonant electric field drop to 5.6 × 109 and 5.0 × 109 V/m when the duration times of pulsed light are 50 and 100 ps, respectively. These results indicate that the energy transfer mechanism of plasmonic nanobubbles (PNBs) under ultrashort-pulsed light irradiation might be very different from that of thermally mediated nanobubbles (TNBs). This work provides new insights into understanding the generation of PNBs induced by ultrashort-pulsed light.

5.
Surg Endosc ; 38(4): 2086-2094, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438676

RESUMEN

INTRODUCTION: Self-expandable metallic stents (SEMSs) can be used to treat esophageal stricture after circumferential endoscopic submucosal dissection (ESD), but its efficacy and placement timing remain to be determined. In this study, the treatment time and number of dilatations were compared between the SEMS placement group and the balloon dilatation (BD) group to clarify the efficacy and placement time of SEMSs in the treatment of esophageal stricture after circumferential esophageal ESD. METHODS: This was a retrospective cohort study. Patients with esophageal stricture after circumferential ESD between January 2015 and January 2020 were included. Data on the patients' demographic characteristics, esophageal lesion-related factors, esophageal stricture occurrence, and measures taken to treat the stricture were collected. The primary outcome was the treatment time, and the secondary outcome was the number of dilatations. RESULTS: The total number of dilatations was 30 in the SEMS group and 106 in the BD group. The average number of dilatations in the SEMS group (1.76 ± 1.64) was significantly lower than that in the BD group (4.42 ± 5.32) (P = 0.016). Among the patients who underwent SEMS placement first had a shorter treatment time (average 119 days) than those who underwent BD first (average 245 days) (P = 0.041), and the average number of dilatations inpatients who underwent SEMS placement first (0.71 ± 1.07) was significantly lower than that in the patients who underwent BD first (2.5 ± 1.54). CONCLUSION: SEMSs were more efficient in the treatment of esophageal stricture in a cohort of patients after circumferential esophageal ESD.


Asunto(s)
Resección Endoscópica de la Mucosa , Neoplasias Esofágicas , Estenosis Esofágica , Stents Metálicos Autoexpandibles , Humanos , Estenosis Esofágica/etiología , Estenosis Esofágica/cirugía , Dilatación , Resección Endoscópica de la Mucosa/efectos adversos , Estudios Retrospectivos , Stents Metálicos Autoexpandibles/efectos adversos , China/epidemiología , Neoplasias Esofágicas/etiología
6.
J Environ Manage ; 351: 119813, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128207

RESUMEN

Food safety is an important issue of most concern for health, while pesticides are one of the main threats to food safety. In view of the potential health hazard of pesticides in food, the cancer and non-cancer risks were assessed for 19 kinds of pesticides in Chinese food in this study. Furthermore, the health risks of different types of pesticides were compared to uncover the most polluted pesticide types in this study. Results show that methyl parathion, dichlorvos and 2,4-D residues in some food groups exceed the Chinese food standards. The cumulative disease burden of six carcinogenic pesticides for people older than 40 years ranges from 1.03 × 10-6 to 2.27 × 10-6, which exceeds the WHO recommended limit of 10-6. The non-cancer risks of 13 kinds of pesticides are all lower than 1 and will not pose appreciable health risk to the consumers. Livestock and poultry (contribution rate = 38.93%) and Milk and dairy products (contribution rate = 22.38%) are the dominate risk exposure sources for carcinogenic pesticides while staple foods (contribution rate = 31.62%) and vegetables (contribution rate = 21.5%) are the main risk exposure sources for non-carcinogenic pesticides. Comparing the risks of different pesticide types, insecticide is the most harmful category in this study, followed by herbicide and acaricide. This study characterized the health risks of pesticides in Chinese food and provided a scientific basis for pesticide management.


Asunto(s)
Insecticidas , Neoplasias , Residuos de Plaguicidas , Plaguicidas , Humanos , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Verduras/química , Contaminación de Alimentos/análisis , Medición de Riesgo
7.
Int Heart J ; 65(2): 173-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556328

RESUMEN

Keshan disease (KD) is a type of endemic cardiomyopathy with an unknown cause. It is primarily found in areas in China with low selenium levels, from northeast to southwest. The nutritional biogeochemical etiology hypothesis suggests that selenium deficiency is a major factor in KD development. Selenium is important in removing free radicals and protecting cells and tissues from peroxide-induced damage. Thus, low environmental selenium may affect the selenium level within the human body, and selenium level differences are commonly observed between healthy people in KD and nonKD areas. From the 1970s to the 1990s, China successfully reduced KD incidence in endemic KD areas through a selenium supplementation program. After years of implementing prevention and control measures, the selenium level of the population in the KD areas has gradually increased, and the prevalence of KD in China has remained low and stable in recent years. Currently, the pathogenesis of KD remains vague, and the effect of selenium supplementation on the prognosis of KD still needs further study. This paper comprehensively reviews selenium deficiency and its connection to KD. Thus, this study aims to offer novel ideas and directions to effectively prevent and treat KD in light of the current situation.


Asunto(s)
Cardiomiopatías , Infecciones por Enterovirus , Desnutrición , Selenio , Humanos , Selenio/análisis , Cardiomiopatías/epidemiología , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/prevención & control , China/epidemiología
8.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(1): 88-92, 2024 Feb 18.
Artículo en Zh | MEDLINE | ID: mdl-38318901

RESUMEN

OBJECTIVE: To investigate the survival rate and clinical failure reasons of onlay and occlusal veneer restorations retrospectively, and to put forward valuable suggestions for the selection of clinical indications. METHODS: A total of 102 patients and 124 teeth treated by one of the authors from 2016 to 2019 were subjected to CAD/CAM lithium silicate reinforced glass-ceramic onlay or veneer restorations of premolars and molars, including 43 teeth with pulp vitality, 81 endodontic treated teeth, and occlusal thickness of restoration was 1.5 mm. After four years of restoration, retrospective surveys were conducted to record the survival rate of restorations, the causes of restoration failure, and patient satisfaction rates, and the survival rate of restorations between vital teeth and endodontic treated teeth and among restored teeth was statistically analyzed by Chi-square test. RESULTS: The survival rates of restorations on vital teeth and endodontic treated teeth were 95.5% and 90.0%, respectively, the average survival rate was 90.2%. The survival rates of vital teeth were higher than those of endodontic treated teeth without statistical difference. There was also no statistically significant difference among the tooth locations. The causes of failure included the cracking of the restoration, the loss of the restoration, the fracture of the abutment teeth, secondary caries below the adjacent contact point, and food impaction caused by the loosening of the adjacent contact point. The overall patient satisfaction rate was 91.5%. CONCLUSION: The 4-year survival rate of glass-ceramic onlays and occlusal veneers is lower than that of the full crown restoration, and there are more complications than that of the single-crown restorations. The design of the restoration should be carefully selected based on the vitality of the abutment tooth and the remaining amount of tooth tissue. When there is too little tooth structure left, a post and crown should be selected for restoration. Adequate strength and thickness of the restoration should be ensured to prevent food impaction. Due to the small amount of abutment tooth preparation, it has the advantages of less stimulation of the pulp and periodontal tissue, and can be recommended as a trial restoration.


Asunto(s)
Coronas , Diente Molar , Humanos , Estudios de Seguimiento , Estudios Retrospectivos , Diente Premolar/cirugía , Cerámica , Fracaso de la Restauración Dental , Porcelana Dental
9.
J Gene Med ; 25(1): e3456, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219542

RESUMEN

BACKGROUND: The c.194+2 T>C variant of serine protease inhibitor Kazal type 1 (SPINK1) is a known genetic risk factor found in Chinese patients with idiopathic chronic pancreatitis (ICP), but the early-onset mechanisms of ICP are still unclear. METHODS: Complementary experimental approaches were used to pursue other potential pathologies in the present study. The serum level of SPINK1 of ICP patients in the Han population in China was detected and verified by an enzyme-linked immunosorbent assay. Next, differentially expressed proteins and microRNAs from plasma samples of early-onset and late-onset ICP patients were screened by proteomic analysis and microarray, respectively. RESULTS: Combined with these advanced methods, the data strongly suggest that the regulatory effects of microRNAs were involved in the early-onset mechanism of the ICP by in vitro experiments. There was no significant difference in the plasma SPINK1 expression between the early-onset ICP and the late-onset patients. However, the expression of plasma glutathione peroxidase (GPx3) in early-onset ICP patients was markedly lower than that in late-onset ICP patients, although the level of hsa-miR-323b-5p was lower in late-onset patients compared to the early-onset ICP group. In vitro experiments confirmed that hsa-miR-323b-5p could increase apoptosis in caerulein-treated pancreatic acinar cells and inhibit the expression of GPx3. CONCLUSIONS: The up-regulated hsa-miR-323b-5p might play a crucial role in the early-onset mechanisms of ICP by diminishing the antioxidant activity through the down-regulation of GPx3.


Asunto(s)
MicroARNs , Pancreatitis Crónica , Humanos , MicroARNs/metabolismo , Pancreatitis Crónica/genética , Proteómica , Factores de Riesgo , Inhibidor de Tripsina Pancreática de Kazal/genética
10.
Prev Med ; 174: 107624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468075

RESUMEN

This paper tried to observe the relationship between the personality of patients with different personalities and the survival rate of replantation of traumatic amputated finger, and analyzed the influencing factors. EPQ psychological quality scores of patients with different gender, average monthly family income and age were significantly different (P < 0.05). In terms of the internal and external tendency score of EPQ, there were statistical requirements for differences in the mean monthly income of patients from different families (P < 0.05). For the concealment degree of EPQ, there were statistical requirements for differences in gender, family income, education level and patient scores (P < 0.05). In terms of mental state, the scores were higher than the standard, whether from the perspective of obsessive-compulsive symptoms, or from the perspective of interpersonal sensitivity, hostility, paranoia and other dimensions, the difference was statistically significant (P < 0.05). Patients with different personality types have different psychological problems after accidental amputation and replantation, which is directly related to the survival rate of postoperative finger amputation. Therefore, in order to effectively improve the survival rate of patients with finger amputation, the psychological condition of patients can be assessed, early detection and intervention of patients' psychological problems, and appropriate intervention measures can be taken according to the personality characteristics of patients.


Asunto(s)
Trastornos Mentales , Reimplantación , Humanos , Tasa de Supervivencia , Personalidad , Amputación Quirúrgica
11.
Environ Sci Technol ; 57(48): 19374-19382, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37948298

RESUMEN

While environmental factors have been considered contributors to atherosclerosis, it remains unclear whether drinking water promotes foam cell formation, the initial event of atherosclerosis. This study revealed that drinking water from six major cities in China, namely, Harbin, Jinan, Shanghai, Wuhan, Chongqing, and Zhuhai, significantly promoted foam cell formation in an in vitro macrophage model at a minimum concentration fold of 2. Moreover, cholesterol efflux was significantly impeded by all samples at 2-16-fold, while cholesterol influx was induced only by samples from Jinan and Chongqing at 16-fold, suggesting the dominant role of efflux in foam cell formation. Interestingly, except for the sample from Jinan, the samples exhibited complete inhibition of liver X receptor α (LXRα) activities at 160-fold, indicating the potential role of chemicals in drinking water in promoting foam cell formation by antagonizing LXRα. Through LXRα protein affinity selection-mass spectrometry, we identified ten LXRα-binding compounds, with efavirenz being revealed for the first time as a significant inducer of foam cell formation through LXRα antagonism. Overall, this study clarifies the atherosclerotic risks posed by drinking water and demonstrates the efavirenz-related atherosclerotic effects.


Asunto(s)
Aterosclerosis , Agua Potable , Receptores X del Hígado , Humanos , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , China , Colesterol/metabolismo , Ciudades , Receptores X del Hígado/antagonistas & inhibidores
12.
Phys Chem Chem Phys ; 25(30): 20414-20421, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37466116

RESUMEN

A tunable dual broadband switchable terahertz absorber based on vanadium dioxide and graphene is proposed. The tunability of graphene and the phase transition properties of vanadium dioxide are used to switch broadband absorption between low-frequency and high-frequency, as well as the absorption rate tuning function. The simulation results indicate that when vanadium dioxide is in the insulating phase and the graphene Fermi energy is 0.7 eV, the absorber achieves low-frequency broadband absorption within the range of 2.6-4.2 THz with an absorptance greater than 90%; when vanadium dioxide is in the metallic phase and the graphene Fermi energy is 0 eV, the absorber achieves high-frequency broadband absorption within the range of 4.9-10 THz with an absorptance greater than 90%. Furthermore, the absorptance can be tuned by adjusting the conductivity of vanadium dioxide or the Fermi energy of graphene. Due to the central symmetry of the proposed structure, the absorber is completely insensitive to polarization. For TE and TM polarized waves, both low and high-frequency broadband absorption are maintained over a range of incident angles from 0° to 50°. The simple structure, tunable absorption rate, insensitivity to polarization angle and incident angle properties are advantages of our proposed absorber. It has broad application prospects in adjustable filters and electromagnetic shielding.

13.
Nano Lett ; 22(20): 8294-8303, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36239583

RESUMEN

Microbial resistance to antibiotics is one of the greatest global healthcare challenges. There is an urgent need to develop effective strategies to overcome antimicrobial resistance. We, herein, report photoinduced in situ growth of a cationic polymer from the N-terminus of lysozyme. The attachment of the cationic polymer improves the proteolytic and thermal stability of lysozyme. Notably, the conjugate can efficiently overcome lysozyme resistance in Gram-positive bacteria and antibiotics-resistance in Gram-negative bacteria, which may be ascribed to the synergistic interactions of lysozyme and the cationic polymer with the bacteria to disrupt their cell membranes. In a rat periodontitis model, the lysozyme-polymer conjugate not only greatly outperforms lysozyme in therapeutic efficacy but also is superior to minocycline hydrochloride, which is the gold standard for periodontitis therapy. These findings may provide an efficient strategy to dramatically enhance the antimicrobial activities of lysozyme and pave a way to overcome antimicrobial resistance.


Asunto(s)
Antibacterianos , Muramidasa , Ratas , Animales , Muramidasa/farmacología , Antibacterianos/farmacología , Polímeros/farmacología , Minociclina , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana
14.
Angew Chem Int Ed Engl ; 62(46): e202311606, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37754555

RESUMEN

Improving catalytic activity without loss of catalytic stability is one of the core goals in search of low-iridium-content oxygen evolution electrocatalysts under acidic conditions. Here, we synthesize a family of 66 SrBO3 perovskite oxides (B=Ti, Ru, Ir) with different Ti : Ru : Ir atomic ratios and construct catalytic activity-stability maps over composition variation. The maps classify the multicomponent perovskites into chemical groups with distinct catalytic activity and stability for acidic oxygen evolution reaction, and highlights a chemical region where high catalytic activity and stability are achieved simultaneously at a relatively low iridium level. By quantifying the extent of hybridization of mixed transition metal 3d-4d-5d and oxygen 2p orbitals for multicomponent perovskites, we demonstrate this complex interplay between 3d-4d-5d metals and oxygen atoms in governing the trends in both activity and stability as well as in determining the catalytic mechanism involving lattice oxygen or not.

15.
Lab Invest ; 102(10): 1075-1087, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35672379

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, characterized by excessive hepatic lipid accumulation. Recently, we demonstrated that Smad ubiquitination regulatory factor 1 (Smurf1) deficiency significantly alleviates mouse hepatic steatosis. However, the mechanism of Smurf1-regulating hepatic lipid accumulation requires further exploration and clarification. Hence, this study explores the potential mechanism of Smurf1 in hepatic steatosis. In this study, hepatic Smurf1 proteins in NAFLD patients and healthy individuals were determined using immunohistochemical staining. Control and NAFLD mouse models were established by feeding Smurf1-knockout (KO) and wild-type mice with either a high-fat diet (HFD) or a chow diet (CD) for eight weeks. Oleic acid (OA)-induced steatotic hepatocytes were used as the NAFLD mode cells. Lipid content in liver tissues was analyzed. Smurf1-MDM2 interaction, MDM2 and p53 ubiquitination, and p53 target genes expression in liver tissues and hepatocytes were analyzed. We found that hepatic Smurf1 is highly expressed in NAFLD patients and HFD-induced NAFLD mice. Its deletion attenuates hepatocyte steatosis. Mechanistically, Smurf1 interacts with and stabilizes mouse double minute 2 (MDM2), promoting p53 degradation. In Smurf1-deficient hepatocytes, an increase in p53 suppresses SREBP-1c expression and elevates the expression of both malonyl-CoA decarboxylase (MCD) and lipin1 (Lpin1), two essential proteins in lipid catabolism. Contrarily, the activities of these three proteins and hepatocyte steatosis are reversed by p53 knockdown in Smurf1-deficient hepatocytes. This study shows that Smurf1 is involved in the pathogenesis of NAFLD by balancing de novo lipid synthesis and lipolysis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Oléico/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína p53 Supresora de Tumor/genética
16.
Am J Transplant ; 22(1): 130-143, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34242470

RESUMEN

Augmenter of liver regeneration (ALR) is an anti-apoptotic protein found mainly in mitochondria. It protects hepatocytes from ischemia-reperfusion (I/R) injury, but the underlying mechanism is not clear. We found that in rats, delivery of the ALR gene alleviated hepatic I/R injury during orthotopic liver transplantation as evidenced by reduced serum aminotransferase, oxidative stress and apoptosis, and increased expression of autophagy markers. In an in vitro hypoxia/reoxygenation (H/R) model, overexpression of the ALR gene activated autophagy and relieved defective mitophagy via the PINK1/Parkin pathway. Mechanistically, ALR transfection induced the expression of mitofusin 2 (Mfn2) in the H/R model, which led to PINK1 accumulation and mitochondrial translocation of Parkin. Deletion of Mfn2 abolished mitophagy activation induced by ALR transfection, promoted mitochondrial dysfunction, and eventually increased cell apoptosis. Mfn2 administration prevented the inhibition of mitophagy in ALR-knockout (KO) cells, thus attenuated mitochondrial dysfunction and cell apoptosis. In heterozygous ALR-knockout mice treated with a warm I/R injury, marked aggravation of liver injury was associated with mitophagy inhibition and reduction in Mfn2 expression. Taken together, our results confirm that ALR accelerated Parkin translocation and mitophagy via Mfn2, and protected hepatocytes from I/R-induced injury. Our findings provide a novel rationale for the treatment of hepatic I/R injury.


Asunto(s)
Mitofagia , Daño por Reperfusión , Animales , Apoptosis , Isquemia , Hígado , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL , Ratas , Daño por Reperfusión/prevención & control
17.
BMC Plant Biol ; 22(1): 8, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979910

RESUMEN

BACKGROUND: High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. RESULTS: Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. CONCLUSIONS: Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.


Asunto(s)
Lycium/fisiología , Metaboloma/fisiología , Estrés Salino/genética , Transcriptoma/fisiología , Lycium/genética , Especificidad de la Especie
18.
Opt Express ; 30(23): 41328-41339, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366613

RESUMEN

A functionally tunable and absorption-tunable terahertz (THz) metamaterial absorber based on vanadium dioxide (VO2) and graphene is proposed and verified numerically. Based on phase transition properties of VO2 and tunability of graphene, the switching performance between ultra-broadband and narrow-band near-perfect absorption can be achieved. We simulate and analyze the characteristics of the constructed model by finite element analysis. Theoretical calculations show that when VO2 is in the metallic state and the graphene Fermi energy is 0 eV, the designed absorber can perform ultra-broadband absorption. The absorber achieves greater than 95% absorption in the 2.85 - 10THz range. When VO2 is in the insulating state and the graphene Fermi energy is 0.7 eV, more than 99.5% absorption can be achieved at 2.3 THz. The absorption rate can be tuned by changing the conductivity of VO2 and the Fermi energy of graphene. Moreover, the proposed absorber displays good polarization insensitivity and wide incident angle stability. The design may have potential applications in terahertz imaging, sensing, electromagnetic shielding and so on.

19.
Stem Cells ; 39(11): 1546-1562, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34310799

RESUMEN

Cell-based therapeutic approaches have been proven to be effective strategies for the treatment of acute liver injury (ALI). However, widespread application of these procedures is limited by several key issues, including rapid loss of stemness in vitro, aberrant differentiation into undesirable cell types, and low engraftment in vivo. In this study, liver epithelial progenitor cells (LEPCs) were characterized and transfected with augmenter of liver regeneration (ALR). The results revealed that in ALI mice with CCl4 , the transplantation of ALR-bearing LEPCs into the liver markedly protected mice against ALI by decreasing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), thus relieving hepatic tissue injury and attenuating inflammatory infiltration. Mechanistically, the knockdown of ALR in LEPCs activated the phosphorylation of dynamin-related protein 1 (Drp1) at the S616 site and thereby enhanced mitochondrial fission. In contrast, the transfection of ALR into LEPCs significantly inhibited Drp1 phosphorylation, thereby favoring the maintenance of mitochondrial integrity and the preservation of adenosine triphosphate contents in LEPCs. Consequently, the ALR-bearing LEPCs transplanted into ALI mice exhibited substantially greater homing ability to the injured liver via the SDF-1/CXCR4 axis than that of LEPCs-lacking ALR. In conclusion, we demonstrated that the transplantation of ALR-transfected LEPCs protected mice against CCl4 -induced ALI, thus offering immense curative potential in the clinic.


Asunto(s)
Regeneración Hepática , Dinámicas Mitocondriales , Animales , Regulación hacia Abajo , Hígado/metabolismo , Regeneración Hepática/fisiología , Ratones , Células Madre
20.
Arch Microbiol ; 204(3): 197, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35217917

RESUMEN

Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.


Asunto(s)
Lycium , Micobioma , Humanos , Lycium/química , Polisacáridos , Rizosfera , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA