Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(2): 622-632, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38273445

RESUMEN

Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.


Asunto(s)
Doxorrubicina/análogos & derivados , Liposomas , Neoplasias , Ratones , Humanos , Animales , Composición de Medicamentos , Vacunas contra la COVID-19 , Inmunoglobulina M , Polietilenglicoles
2.
Biol Pharm Bull ; 47(2): 469-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38383000

RESUMEN

Polyethylene glycol (PEG)-modified (PEGylated) cationic liposomes are frequently used as delivery vehicles for small interfering RNA (siRNA)-based drugs because of their ability to encapsulate/complex with siRNA and prolong the circulation half-life in vivo. Nevertheless, we have reported that subsequent intravenous (IV) injections of siRNA complexed with PEGylated cationic liposomes (PLpx) induces the production of anti-PEG immunoglobulin M (IgM), which accelerates the blood clearance of subsequent doses of PLpx and other PEGylated products. In this study, it is interesting that splenectomy (removal of spleen) did not prevent anti-PEG IgM induction by IV injection of PLpx. This indicates that B cells other than the splenic version are involved in anti-PEG IgM production under these conditions. In vitro and in vivo studies have shown that peritoneal cells also secrete anti-PEG IgM in response to the administration of PLpx. Interleukin-6 (IL-6) is a glycoprotein that is secreted by peritoneal immune cells and has been detected in response to the in vivo administration of PLpx. These observations indicate that IV injection of PLpx stimulates the proliferation/differentiation of peritoneal PEG-specific B cells into plasma cells via IL-6 induction, which results in the production of anti-PEG IgM from the peritoneal cavity of mice. Our results suggest the mutual contribution of peritoneal B cells as a potent anti-PEG immune response against PLpx.


Asunto(s)
Liposomas , Polietilenglicoles , Ratones , Animales , ARN Interferente Pequeño , Inmunoglobulina M , Interleucina-6
3.
Biol Pharm Bull ; 45(7): 926-933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786600

RESUMEN

B cells are types of lymphocytes that are involved in the production of antibodies against pathogens. They also deliver and present antigens for the priming of T cells. Recently, we developed an in vivo splenic marginal zone (MZ) B cell-targeting liposomes decorated with polyethylene glycol (PEG) containing a hydroxyl-terminus group (HO-PEG-Lip). In an expansion of a previous study, we used HO-PEG-Lip as an in vitro antigen delivery tool to splenic B cells to test the ability of this formulation to overcome the limitations of the poor antigen uptake ability of B cells for implantation. To achieve our purpose, various factors were optimized. These factors include cell number, liposome concentration, pre-opsonization of liposomes, fresh serum concentration, and incubation time, all of which affect the extent of interaction between liposomes and B cells. As a result, we confirmed that the HO-PEG-Lip required incubation at 37 °C for at least 20 min with 50% mouse fresh serum followed by a subsequent incubation at 37 °C for at least another 30 min with splenic B cells. By using such a loading system, fluorescein isothiocyanate (FITC)-labeled ovalbumin (OVA), a model antigen, encapsulated in HO-PEG-Lip could be efficiently loaded into splenic B cells. In addition, HO-PEG-Lip and FITC-labeled OVA encapsulated in HO-PEG-Lip were efficiently associated with MZ-B cells with high levels of complement receptors (CRs) rather than follicular B cells with low levels of CRs. These results propose a novel and useful system to efficiently load antigens into B cells in vitro by taking advantage of complement systems.


Asunto(s)
Antígenos , Liposomas , Animales , Linfocitos B , Fluoresceína-5-Isotiocianato , Ratones , Polietilenglicoles , Bazo
4.
Biol Pharm Bull ; 45(10): 1518-1524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184510

RESUMEN

PEGylated liposomes (PL) lose their long-circulating characteristic when administered repeatedly, called the accelerated blood clearance (ABC) phenomenon. The ABC phenomenon is generally thought to occur when the anti-polyethylene glycol (PEG) antibody (anti-PEG immunoglobulin M (IgM)) expressed in the spleen B cells triggered by the first dose of PL binds to the second and subsequent doses of PL, leading to activation of the complement system. MAL-PEG-DSPE, a PEG lipid with a maleimide (MAL) group at the PEG terminal, is used in various studies as a linker for ligand-bound liposomes such as antibody-modified liposomes. However, most ABC phenomenon research used PL with a terminal methoxy group (PL-OCH3). In this study, we prepared MAL-PEG-DSPE liposomes (PL-MAL) to evaluate the effect of PL-MAL on the ABC phenomenon induction compared to PL-OCH3. Pharmacokinetic, anti-PEG IgM secretion and complement activation analyses of these liposomes were conducted in mice. Interestingly, despite C3 bound to the surface of the initially administered PL-MAL, the administered PL-MAL showed high blood retention, demonstrating the same results as PL-OCH3. On the other hand, although the secretion of anti-PEG IgM induced by PL-MAL was lower than PL-OCH3, the second dose of PL-MAL rapidly disappeared from the blood. These results suggest that the antibody produced from the first dose of PL-MAL binds to the second dose of PL-MAL, thereby activating C3 to act as an opsonin which promotes phagocytic uptake. In conclusion, PL-MAL induced the ABC phenomenon independent of the production of IgM antibodies against PEG. This study provides valuable findings for further studies using ligand-bound liposomes.


Asunto(s)
Liposomas , Proteínas Opsoninas , Animales , Proteínas del Sistema Complemento , Inmunoglobulina M , Ligandos , Maleimidas , Ratones , Fosfatidiletanolaminas , Polietilenglicoles/farmacología
5.
Biol Pharm Bull ; 45(1): 129-135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34980774

RESUMEN

The purpose of this study was to develop a Bio-layer interferometry (BLI) system that could be an alternative approach for the direct evaluation of anti-polyethylene glycol (PEG) immunoglobulin M (IgM)-mediated complement activation of the accelerated blood clearance (ABC) phenomenon. Complement activation is well known to play an important role in the clearance of PEGylated and non-PEGylated nanomedicines following intravenous injection. This complement system is also thought to be responsible for the ABC phenomenon wherein repeated injections of PEGylated products are bound by anti-PEG antibodies. This study used three different sources of anti-PEG antibodies: HIK-M09 monoclonal antibodies (mAbs); HIK-M11 mAbs; and antiserum containing polyclonal anti-PEG IgMs. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy (polyethylene glycol)-2000] (mPEG2000-DSPE) was immobilized as an antigen on aminopropyl silane biosensor chips of BLI. All anti-PEG IgMs in the sources increased the signals (thickness of the layer around the sensor tip) regarding binding of anti-PEG antibodies to PEG on the chips. In all anti-PEG IgM sources, further increases in the signals were observed when incubated in naïve mouse serum, which is a complement source, but not in heat inactivated (56 °C, 30 min) mouse serum, which abolishes complement activity. These findings show that the complement activation mediated via anti-PEG IgMs, which occurred on the sensor chips, was detected via BLI analysis. The complement activation induced by all anti-PEG IgM sources was confirmed via conventional enzyme-linked immunosorbent assay (ELISA), which is the conventional mode for detection of complement activation. Our study results show that BLI is a simple alternative method for the detection of complement activation.


Asunto(s)
Liposomas , Polietilenglicoles , Animales , Activación de Complemento , Inmunoglobulina M , Interferometría , Liposomas/farmacología , Ratones , Polietilenglicoles/farmacología
6.
Chem Pharm Bull (Tokyo) ; 70(5): 341-350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491190

RESUMEN

Vaccines have contributed to the prevention of infectious diseases for a long time. Pathogen-derived antigens and adjuvants in vaccine formulations stimulate immune cells to elicit humoral and cellular immune responses against pathogens. Achieving highly immune responses with decreased adverse effects requires the development of a system that can deliver antigens to specific immune cells. Dendritic cells (DCs) are well-known professional antigen presenting cells (APCs) that initiate acquired immune responses by presenting antigens to T cells. Accordingly, DC-targeted vaccines have been investigated and applied in clinical trials for the treatment of infectious diseases and for chronic diseases such as cancers. In addition to DCs, B lymphocytes are regarded as professional APCs despite their primary role in humoral immunity. Therefore, B cell-targeted vaccines are also expected to elicit both humoral and cellular immune responses. In this review we summarize the basic functions of DCs and B cells as APCs. We also provide information on DC and B cell targeted vaccines in preclinical and clinical settings. Finally, we introduce our novel antigen delivery system that targets splenic marginal zone B cells and the ability of this system to act as a novel vaccine that elicits both humoral and cellular immune responses.


Asunto(s)
Antígenos , Vacunas , Adyuvantes Inmunológicos , Células Dendríticas , Inmunidad Celular
7.
Chem Pharm Bull (Tokyo) ; 70(5): 351-358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491191

RESUMEN

Oxaliplatin (l-OHP) is a third-generation platinum (Pt) agent approved for the treatment of patients with advanced colorectal cancer. Despite the fact that l-OHP has shown clinical therapeutic efficacy and better tolerability compared with other Pt agents, the use of l-OHP has been limited to clinical settings because of dose-limiting side effects such as cumulative neurotoxicity and acute dysesthesias, which can be severe. In preclinical and clinical studies, our group and several others have attempted the delivery of l-OHP to solid tumors via encapsulation in PEGylated liposomes. Herein, we review these attempts.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Liposomas , Compuestos Organoplatinos/uso terapéutico , Oxaliplatino , Polietilenglicoles
8.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498944

RESUMEN

Formation of foam cells as a result of excess lipid accumulation by macrophages is a pathological hallmark of atherosclerosis. Fingolimod (FTY720) is an immunosuppressive agent used in clinical settings for the treatment of multiple sclerosis and has been reported to inhibit atherosclerotic plaque development. However, little is known about the effect of FTY720 on lipid accumulation leading to foam cell formation. In this study, we investigated the effects of FTY720 on lipid accumulation in murine macrophages. FTY720 treatment reduced lipid droplet formation and increased the expression of ATP-binding cassette transporter A1 (ABCA1) in J774 mouse macrophages. FTY720 also enhanced the expression of liver X receptor (LXR) target genes such as FASN, APOE, and ABCG1. In addition, FTY720-induced upregulation of ABCA1 was abolished by knockdown of sphingosine kinase 2 (SphK2) expression. Furthermore, we found that FTY720 treatment induced histone H3 lysine 9 (H3K9) acetylation, which was lost in SphK2-knockdown cells. Taken together, FTY720 induces ABCA1 expression through SphK2-mediated acetylation of H3K9 and suppresses lipid accumulation in macrophages, which provides novel insights into the mechanisms of action of FTY720 on atherosclerosis.


Asunto(s)
Aterosclerosis , Clorhidrato de Fingolimod , Ratones , Animales , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células Espumosas/metabolismo , Aterosclerosis/metabolismo
9.
Mol Pharm ; 18(6): 2406-2415, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896187

RESUMEN

Gangliosides (glycosphingolipids) reduce antibody production by inhibiting B-cell receptor (BCR) signaling. We have shown that a copresentation of gangliosides and polyethylene glycol (PEG) on the same liposomes suppresses anti-PEG IgM production in mice. In addition, we recently observed that pDNA incorporated in PEGylated cationic liposomes (PCLs) induces anti-DNA IgM, which could be a hurdle to the development of efficient gene delivery systems. Therefore, the focus of this study was to determine if the copresentation of gangliosides and DNA on the same PCL would suppress antibody production against DNA. PCLs including DNA induced both anti-PEG IgM production and anti-DNA IgM production. The extent of anti-PEG and anti-DNA IgM production was likely dependent on the immunogenicity of the complexed DNA. Treatment of clodronate-containing liposomes, which causes a depletion of phagocytic cells, suppressed anti-PEG IgM production from PCLs that did not include DNA but failed to suppress anti-PEG IgM production from PCLs that complexed DNA (PCLD). Both anti-PEG IgM and anti-DNA IgM was induced in T-cell-deficient nude mice as well as in normal mice following treatment with PCLs and PCLD, respectively. These results indicate that phagocytic cells contribute to anti-PEG IgM production but not to anti-DNA IgM production, while T-cells do not contribute to any form of antibody production. The copresentation of gangliosides and DNA significantly reduced anti-PEG IgM production but unfortunately did not reduce anti-DNA IgM production. It appears that the immunosuppressive effect of gangliosides, presumably via the CD22 signaling pathway, is limited only to anti-PEG immunity.


Asunto(s)
Ácido Clodrónico/administración & dosificación , ADN/inmunología , Gangliósidos/inmunología , Técnicas de Transferencia de Gen/efectos adversos , Inmunoglobulina M/metabolismo , Animales , Formación de Anticuerpos , Cationes , Gangliósidos/química , Terapia Genética/métodos , Liposomas , Masculino , Ratones , Fagocitos/efectos de los fármacos , Fagocitos/inmunología , Fagocitos/metabolismo , Plásmidos/administración & dosificación , Plásmidos/genética , Polietilenglicoles/química
10.
J Gastroenterol Hepatol ; 36(5): 1253-1262, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32989784

RESUMEN

BACKGROUND AND AIM: It is difficult to differentiate gastrointestinal stromal tumors (GISTs) from other subepithelial lesions under gastrointestinal endoscopy. Because most GISTs express tyrosine kinase receptor c-KIT, fluorescence-labeled c-KIT-specific tyrosine kinase inhibitors seem to be useful agents for molecular imaging of GIST. We aimed to develop a near-infrared fluorescent imaging technology for GIST targeting c-KIT using the novel fluorescent probe indocyanine green-labeled dasatinib (ICG-dasatinib) and to investigate the antitumor effect of ICG-dasatinib on GIST cells. METHODS: Indocyanine green-labeled dasatinib was synthesized by labeling linker-induced dasatinib with ICG derivative 3-indocyanine-green-acyl-1,3-thiazolidine-2-thione. Human GIST cell lines GIST-T1 and GIST-882M were incubated with ICG-dasatinib and observed by fluorescent microscopy. GIST cells were incubated with ICG-dasatinib, unlabeled dasatinib, or imatinib, and cell viabilities were evaluated. Subcutaneous GIST model mice or orthotopic GIST model rats were intravenously injected with ICG-dasatinib and observed using an IVIS Spectrum. RESULTS: Strong fluorescent signals of ICG-dasatinib were observed in both GIST cell lines in vitro. IC50 values for ICG-dasatinib, unlabeled dasatinib, and imatinib were 13.9, 1.17, and 16.2 nM in GIST-T1 and 26.6, 3.63, and 47.6 nM in GIST-882M cells, respectively. ICG-dasatinib accumulated in subcutaneous xenografts in mice. Fluorescent signals were also observed in liver and gallbladder, indicating biliary excretion; however, fluorescence intensity of tumors was significantly higher than that of intestine after washing. Strong fluorescent signals were observed in orthotopic xenografts through the covering normal mucosa in rats. CONCLUSIONS: Indocyanine green-labeled dasatinib could visualize GIST cells and xenografted tumors. The antitumor effect of ICG-dasatinib was preserved to the same degree as imatinib.


Asunto(s)
Dasatinib , Colorantes Fluorescentes , Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Verde de Indocianina , Imagen Molecular/métodos , Animales , Línea Celular , Modelos Animales de Enfermedad , Tumores del Estroma Gastrointestinal/metabolismo , Tumores del Estroma Gastrointestinal/patología , Humanos , Ratones , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-kit/metabolismo , Ratas
11.
Biol Pharm Bull ; 44(2): 266-270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518679

RESUMEN

Extracellular pH (pHe) of tumor cells is characteristic of tumor microenvironment (TME). Acidic TME impairs the responses of tumors to some anti-cancer chemotherapies. In this study, we showed that daily oral dosing of sodium potassium citrate (K/Na citrate) increased blood HCO3- concentrations, corresponding to increase of HCO3- concentrations and pHs in urine, and neutralized the tumor pHe. Neutralization of acidic TME by alkaline substance like HCO3-, an active metabolite of K/Na citrate, well potentiated the therapeutic effect of anticancer agent TS-1®, an orally active 5-fuluoro-uracil derivative, in Panc-1 pancreatic cancer-xenograft murine model. Neutralization of acidic TME by using an alkaline K/Na citrate is a smart approach for enhancement of the therapeutic effects of anticancer agents for pancreatic cancer in the end stage.


Asunto(s)
Antiácidos/administración & dosificación , Concentración de Iones de Hidrógeno/efectos de los fármacos , Ácido Oxónico/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Tegafur/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Administración Oral , Animales , Antiácidos/farmacocinética , Línea Celular Tumoral , Combinación de Medicamentos , Sinergismo Farmacológico , Espacio Extracelular/química , Espacio Extracelular/efectos de los fármacos , Femenino , Humanos , Ratones , Ácido Oxónico/farmacocinética , Ácido Oxónico/uso terapéutico , Neoplasias Pancreáticas/patología , Citrato de Potasio/administración & dosificación , Citrato de Potasio/farmacocinética , Citrato de Sodio/administración & dosificación , Citrato de Sodio/farmacocinética , Tegafur/farmacocinética , Tegafur/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Biol Pharm Bull ; 44(6): 844-852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34078817

RESUMEN

Acidic extracellular pH (pHe) is characteristic of the tumor microenvironment. Several reports suggest that increasing pHe improves the response of immune checkpoint inhibitors in murine models. To increase pHe, either sodium bicarbonate (NaHCO3) or citric acid/potassium-sodium citrate (KNa-cit) was chronically administered to mice. It is hypothesized that bicarbonate ions (HCO3-), produced from these alkalinizing agents in vivo, increased pHe in the tumor, and excess HCO3- eliminated into urine increased urinary pH values. However, there is little published information on the effect of changing serum HCO3- concentrations, urinary HCO3- concentrations and urinary pH values on the therapeutic outcomes of immunotherapy. In this study, we report that oral administration of either NaHCO3 or KNa-cit increased responses to anti-programmed cell death-1 (PD-1) antibody, an immune checkpoint inhibitor, in a murine B16 melanoma model. In addition, we report that daily oral administration of an alkalinizing agent increased blood HCO3- concentrations, corresponding to increasing the tumor pHe. Serum HCO3- concentrations also correlated with urinary HCO3- concentrations and urinary pH values. There was a clear relationship between urinary pH values and the antitumor effects of immunotherapy with anti-PD-1 antibody. Our results imply that blood HCO3- concentrations, corresponding to tumor pHe and urinary pH values, may be important factors that predict the clinical outcomes of an immunotherapeutic agent, when combined with alkalinizing agents such as NaHCO3 and KNa-cit.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Bicarbonatos/uso terapéutico , Citratos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Administración Oral , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Bicarbonatos/sangre , Bicarbonatos/farmacología , Línea Celular Tumoral , Citratos/farmacología , Femenino , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/química , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Macrófagos Asociados a Tumores/inmunología , Orina/química
13.
Mol Pharm ; 17(8): 2964-2970, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32519877

RESUMEN

PEGylation had been used successfully to improve the circulation half-lives and some physicochemical properties of protein therapeutics. However, anti-polyethylene glycol (anti-PEG) antibodies, either pre-existing or treatment-induced, can negatively affect the pharmacokinetics and pharmacological efficacy of PEGylated proteins. We have examined anti-PEG immune responses in mice for peginterferon alfa-2a (Pegasys), a clinically approved PEGylated protein therapeutic, at both the recommended dose (equivalent to 3 µg/kg in mice) and at higher doses (150 µg/kg) for single or repeated subcutaneous (s.c.) administrations. The effect of treatment-induced anti-PEG IgM on serum concentrations of Pegasys, following repeated administrations, was evaluated. In addition, the effect of pre-existing anti-PEG IgM elicited by a different PEGylated protein, PEG-OVA, on the systemic clearance of Pegasys, was investigated. At a s.c. dose of 3 µg/kg, single injections of Pegasys barely elicited anti-PEG immune responses. Four repeated doses of 150 µg/kg Pegasys elicited anti-PEG IgM production, depending on dose frequency, and triggered the rapid clearance of subsequent doses. In addition, anti-PEG-IgM produced in response to prior administration of PEG-OVA caused a rapid blood clearance of Pegasys. Our results, therefore, underscore the importance of screening for both pre-existing and treatment-induced anti-PEG antibodies in patients prior to and during treatment with PEGylated protein drugs.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Inmunoglobulina M/inmunología , Interferón-alfa/farmacocinética , Polietilenglicoles/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Polietilenglicoles/farmacocinética , Proteínas Recombinantes/farmacocinética
14.
Biol Pharm Bull ; 43(9): 1393-1397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879214

RESUMEN

Protein-based therapeutics are beginning to be widely used in various clinical settings. Conjugation of polyethylene glycol (PEGylation) to protein therapeutics improves their circulation half-lives in the body. However, we and other groups observed that the initial dose of some PEGylated protein-based therapeutics may induce anti-PEG antibodies (primarily immunoglobulin M (IgM)), resulting in the accelerated clearance of a second dose. The mechanism behind the induction of anti-PEG IgM by PEGylated protein-based therapeutics is still unclear. In this study, we found that Pegfilgrastim (PEG-G-CSF, the PEGylated form of the recombinant human granulocyte colony-stimulating factor) induced anti-PEG IgM in mice when administered via either intravenous or subcutaneous administration. However, the anti-PEG IgM induction is diminished both in athymic nude mice lacking T cells and in splenectomized mice. In addition, anti-PEG IgM production was significantly diminished in the cyclophosphamide-treated mice depleted of B-cells. These results indicate that anti-PEG IgM production by Pegfilgrastim occurs in spleen in a T cell-dependent manner, which differs from anti-PEG IgM induced by PEGylated liposomes. However, B cells, both marginal zone and follicular, are essential for anti-PEG IgM production in both PEGylated preparations.


Asunto(s)
Filgrastim/inmunología , Inmunoglobulina M/metabolismo , Bazo/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Ciclofosfamida/administración & dosificación , Filgrastim/administración & dosificación , Filgrastim/química , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Inyecciones Intravenosas , Inyecciones Subcutáneas , Liposomas , Depleción Linfocítica/métodos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Animales , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Bazo/inmunología , Bazo/metabolismo , Bazo/cirugía , Esplenectomía , Linfocitos T/inmunología , Timo/efectos de los fármacos , Timo/inmunología , Timo/metabolismo
15.
Molecules ; 25(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283709

RESUMEN

BACKGROUND: We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection. METHODS: To study the usefulness of iRed for local injection, the engineered iRed encoding luciferase shRNA (Luc iRed), complexed with cationic liposomes (Luc iRed/liposome-complexes), was intrapleurally injected into an orthotopic mesothelioma mouse model. RESULTS: Luc iRed/liposome-complexes markedly suppressed the expression of a luciferase marker gene in pleurally disseminated mesothelioma cells. The suppressive efficiency was correlated with the expression level of shRNA within the mesothelioma cells. In addition, intrapleural injection of iRed/liposome-complexes did not induce IL-6 production in the pleural space and consequently in the blood compartment, although plasmid DNA (pDNA) or dsDNA (the natural construct for iRed) in the formulation did. CONCLUSION: Local delivery of iRed could augment the in vivo gene silencing effect without eliciting pronounced innate immune stimulation. Our results might hold promise for widespread utilization of iRed as an RNAi-based therapeutic for intracelial malignant cancers.


Asunto(s)
Silenciador del Gen , Inmunomodulación/genética , Mesotelioma Maligno/genética , Neoplasias Pleurales/genética , Interferencia de ARN , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunidad Innata/genética , Liposomas , Ratones , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Biomacromolecules ; 20(10): 3648-3657, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31518109

RESUMEN

The affinity of a synthetic polymer nanoparticle (NP) to a target biomacromolecule is determined by the association and dissociation rate constants (kon, koff) of the interaction. The individual rates and their sensitivity to local environmental influences are important factors for the on-demand capture and release a target biomacromolecule. Positively charged NPs for small interfering RNA (siRNA) delivery is a case in point. The knockdown efficacy of siRNA can be strongly influenced by the binding kinetics to the NP. Here, we show that kon and koff of siRNA to NPs can be individually engineered by tuning the chemical structure and composition of the NP. N-Isopropylacrylamide-based NPs functionalized with hydrophobic and amine monomers were used. koff decreased by increasing the amount of amine groups in the NP, whereas kon did not change. Importantly, NPs showing a low koff at pH 5.5 together with a high koff at pH 7.4 showed high knockdown efficiency when NP/siRNA complexes were packaged in lipid nanoparticles. These results provide direct evidence for the premise that the efficacy of an siRNA delivery vector is linked with the strong affinity to the siRNA in the endosome and low affinity in the cytoplasm.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , ARN Interferente Pequeño/metabolismo , Acrilamidas/química , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Endosomas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Ratones , ARN Interferente Pequeño/genética , Polímeros de Estímulo Receptivo/química
17.
Molecules ; 24(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052207

RESUMEN

Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. In this study, we confirmed the presence of polysulfide in other biological fluids, such as semen and nasal discharge. The levels of polysulfide in these biological fluids from healthy volunteers (n = 9) with identical characteristics were compared. Additionally, the circadian rhythm of plasma polysulfide was also investigated. The polysulfide levels detected from nasal discharge and seminal fluid were approximately 400 and 600 µM, respectively. No correlation could be found between plasma polysulfide and the polysulfide levels of tear, saliva, and nasal discharge. On the other hand, seminal polysulfide was positively correlated with plasma polysulfide, and almost all polysulfide contained in semen was found in seminal fluid. Intriguingly, saliva and seminal polysulfide strongly correlated with salivary amylase and sperm activities, respectively. These results provide a foundation for scientific breakthroughs in various research areas like infertility and the digestive system process.


Asunto(s)
Amilasas/metabolismo , Espermatozoides/fisiología , Sulfuros/metabolismo , Adulto , Factores de Edad , Biomarcadores , Líquidos Corporales , Índice de Masa Corporal , Ritmo Circadiano , Femenino , Humanos , Masculino , Proteínas/metabolismo , Factores Sexuales , Recuento de Espermatozoides , Motilidad Espermática , Adulto Joven
18.
Mol Pharm ; 15(2): 403-409, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29287147

RESUMEN

Microsynchrotron radiation X-ray fluorescence spectrometry (µ-SR-XRF) is an X-ray procedure that utilizes synchrotron radiation as an excitation source. µ-SR-XRF is a rapid, nondestructive technique that allows mapping and quantification of metals and biologically important elements in cell or tissue samples. Generally, the intratumor distribution of nanocarrier-based therapeutics is assessed by tracing the distribution of a labeled nanocarrier within tumor tissue, rather than by tracing the encapsulated drug. Instead of targeting the delivery vehicle, we employed µ-SR-XRF to visualize the intratumoral microdistribution of oxaliplatin (l-OHP) encapsulated within PEGylated liposomes. Tumor-bearing mice were intravenously injected with either l-OHP-containing PEGylated liposomes (l-OHP liposomes) or free l-OHP. The intratumor distribution of l-OHP within tumor sections was determined by detecting the fluorescence of platinum atoms, which are the main elemental components of l-OHP. The l-OHP in the liposomal formulation was localized near the tumor vessels and accumulated in tumors at concentrations greater than those seen with the free form, which is consistent with the results of our previous study that focused on fluorescent labeling of PEGylated liposomes. In addition, repeated administration of l-OHP liposomes substantially enhanced the tumor accumulation and/or intratumor distribution of a subsequent dose of l-OHP liposomes, presumably via improvements in tumor vascular permeability, which is also consistent with our previous results. In conclusion, µ-SR-XRF imaging efficiently and directly traced the intratumor distribution of the active pharmaceutical ingredient l-OHP encapsulated in liposomes within tumor tissue. µ-SR-XRF imaging could be a powerful means for estimating tissue distribution and even predicting the pharmacological effect of nanocarrier-based anticancer metal compounds.


Asunto(s)
Antineoplásicos/farmacocinética , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen , Oxaliplatino/farmacocinética , Espectrometría por Rayos X/métodos , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Estudios de Factibilidad , Humanos , Liposomas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Oxaliplatino/administración & dosificación , Polietilenglicoles/química , Distribución Tisular
19.
Pharm Res ; 35(11): 223, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30280273

RESUMEN

PURPOSE: Immunogenicity of PEGylated proteins and nanomedicines represents a potential impediment against their development and use in clinical settings. The purpose of this study is to develop a method for detecting anti-PEG immunity of PEGylated proteins and/or nanomedicines using flow cytometry. METHODS: The binding of fluorescence-labeled mPEG-modified liposomes to HIK-G11 cells, PEG-specific hybridoma cells, or spleen cells was evaluated by flow cytometry for detecting immunogenicity of PEGylated therapeutics. RESULTS: The fluorescence-labeled methoxy PEG (mPEG)-modified liposomes were efficiently bound to HIK-G11 cells. Such staining with fluorescence-labeled mPEG-modified liposomes was significantly inhibited in the presence of either non-labeled mPEG-modified liposomes or mPEG-modified ovalbumin (OVA) but not polyglycerol-modified liposomes. In addition, we found that mPEG-modified liposomes, highly immunogenic, caused proliferation of PEG-specific cells, while hydroxyl PEG-modified liposomes, less immunogenic, scarcely caused. Furthermore, after intravenous injection of mPEG-modified liposomes, the percentage of PEG-specific cells in the splenocytes, as determined by flow cytometry, corresponded well with the production level of anti-PEG antibodies, as determined by ELISA. CONCLUSIONS: PEG-specific B cell assay we introduced may become a useful method to detect an anti-PEG immune response against PEGylated therapeutics and clarify the mechanism for anti-PEG immune responses.


Asunto(s)
Liposomas/inmunología , Ovalbúmina/inmunología , Polietilenglicoles/química , Animales , Formación de Anticuerpos , Linfocitos B/citología , Linfocitos B/inmunología , Línea Celular , Citometría de Flujo , Glicerol/química , Humanos , Hibridomas , Inmunoglobulina M/sangre , Liposomas/química , Masculino , Ratones Endogámicos BALB C , Ovalbúmina/química , Tamaño de la Partícula , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Polietilenglicoles/toxicidad , Polímeros/química , Bazo/citología , Bazo/inmunología
20.
Biol Pharm Bull ; 41(7): 1078-1083, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962402

RESUMEN

Modulation of tumor immunity is a known factor in the antitumor activity of many chemotherapeutic agents. Exosomes are extracellular nanometric vesicles that are released by almost all types of cells, which includes cancer cells. These vesicles play a crucial role in tumor immunity. Many in vitro studies have reproduced the aggressive secretion of exosomes following treatment with conventional anticancer drugs. Nevertheless, how chemotherapeutic agents including nanomedicines such as Doxil® affect the in vivo secretion of exosomes is yet to be elucidated. In this study, the effect of intravenous injection of either free doxorubicin (DXR) or liposomal DXR formulation (Doxil®) on exosome secretion was evaluated in BALB/c mice. Exosomes were isolated from serum by using an ExoQuick™ kit. Free DXR treatment markedly increased serum exosome levels in a post-injection time-dependent manner, while Doxil® treatment did not. Exosomal size distribution and marker protein expressions (CD9, CD63, and TSG101) were studied. The physical/biological characteristics of treatment-induced exosomes were comparable to those of control mice. Interestingly, splenectomy significantly suppressed the copious exosomal secretions induced by free DXR. Collectively, our results indicate that conventional anticancer agents induce the secretion of circulating exosomes, presumably via stimulating immune cells of the spleen. As far as we know, this study represents the first report indicating that conventional chemotherapeutics may induce exosome secretion which might, in turn, contribute partly to the antitumor effect of chemotherapeutic agents.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/análogos & derivados , Exocitosis/efectos de los fármacos , Exosomas/metabolismo , Animales , Doxorrubicina/farmacología , Exosomas/efectos de los fármacos , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Polietilenglicoles/farmacología , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA