RESUMEN
PARP inhibitors (PARPi) benefit only a small subset of patients with DNA homologous recombination (HR) defects. In addition, long-term administration of a PARPi can lead to the development of drug resistance. 2-Hydroxyglutarate (2HG) has long been known as an oncometabolite but is capable of inducing an HR defect, which makes tumor cells exquisitely sensitive to PARPi. To facilitate the translation of this discovery to the treatment of both HR-deficient and HR-proficient tumors, a liposomal formulation was developed for codelivery of 2HG and veliparib, a PARPi. A sequential loading protocol was developed such that the initial loading of 2HG into liposomes greatly facilitated the subsequent, pH gradient-driven remote loading of veliparib. The liposomes co-loaded with veliparib and 2HG exhibited favorable stability, slow kinetics of drug release, and targeted delivery to the tumor. Furthermore, the veliparib/2HG liposomes demonstrated enhanced anti-tumor activity in both PARPi-resistant BRCA mutant cancer and BRCA wildtype cancer by synergistically enhancing the defect in DNA repair. Moreover, combination of veliparib and 2HG via liposomal co-delivery also augmented the function of cytotoxic T cells by activating the STING pathway and downregulating PD-L1 expression via 2HG-induced hypermethylation.
Asunto(s)
Bencimidazoles , Reparación del ADN , Liposomas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Animales , Bencimidazoles/farmacología , Bencimidazoles/administración & dosificación , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones , Sinergismo Farmacológico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína BRCA1/genéticaRESUMEN
Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous. In the current study, we provide the first preclinical evidence demonstrating that although diet-induced acute zinc deficiency (Zn-D: ~50% decrease) did not worsen infection induced by either influenza A (H1N1) or methicillin-resistant staph aureus (MRSA), Zn-D mice were sensitive to the injurious effects of superinfection of H1N1 with MRSA. Although the mechanism underlying the sensitivity of ZnD mice to combined H1N1/MRSA infection is unclear, it was noteworthy that this combination exacerbated lung injury as shown by lung epithelial injury markers (increased BAL protein) and decreased genes related to epithelial integrity in Zn-D mice (surfactant protein C and secretoglobins family 1A member 1). As bacterial pneumonia accounts for 25%-50% of morbidity and mortality from influenza A infection, zinc deficiency may be an important pathology component of respiratory tract infections.