Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(2): e29416, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38285457

RESUMEN

The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Vacunación , Inmunización Secundaria , Anticuerpos Neutralizantes , Epítopos/genética , Vacunas Combinadas
2.
J Med Virol ; 95(8): e29046, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37605969

RESUMEN

Rabies is a fatal viral zoonosis caused by rabies virus (RABV). RABV infects the central nervous system and triggers acute encephalomyelitis in both humans and animals. Endemic in the Brazilian Northeast region, RABV emergence in distinct wildlife species has been identified as a source of human rabies infection and as such, constitutes a public health concern. Here, we performed post-mortem RABV analyses of 144 encephalic tissues from bats sampled from January to July 2022, belonging to 15 different species. We identified phylogenetically distinct RABV from Phyllostomidae and Molossidae bats circulating in Northeastern Brazil. Phylogenetic clustering revealed the close evolutionary relationship between RABV viruses circulating in bats and variants hosted in white-tufted marmosets, commonly captured to be kept as pets and linked to human rabies cases and deaths in Brazil. Our findings underline the urgent need to implement a phylogenetic-scale epidemiological surveillance platform to track multiple RABV variants which may pose a threat to both humans and animals.


Asunto(s)
Quirópteros , Virus de la Rabia , Rabia , Animales , Humanos , Callithrix , Virus de la Rabia/genética , Rabia/epidemiología , Rabia/veterinaria , Brasil/epidemiología , Filogenia
3.
J Med Virol ; 95(2): e28481, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609686

RESUMEN

The main coronavirus disease 2019 (COVID-19) vaccine formulations used today are mainly based on the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein as an antigen. However, new virus variants capable of escaping neutralization activity of serum antibodies elicited in vaccinated individuals have emerged. The Omicron (B.1.1.529) variant caused epidemics in regions of the world in which most of the population has been vaccinated. In this study, we aimed to understand what determines individual's susceptibility to Omicron in a scenario of extensive vaccination. For that purpose, we collected nasopharynx swab (n = 286) and blood samples (n = 239) from flu-like symptomatic patients, as well as their vaccination history against COVID-19. We computed the data regarding vaccine history, COVID-19 diagnosis, COVID-19 serology, and viral genome sequencing to evaluate their impact on the number of infections. As main results, we showed that vaccination in general did not reduce the number of individuals infected by Omicron, even with an increased immune response found among vaccinated, noninfected individuals. Nonetheless, we found that individuals who received the third vaccine dose showed significantly reduced susceptibility to Omicron infections. A relevant evidence that support this finding was the higher virus neutralization capacity of serum samples of most patients who received the third vaccine dose. In summary, this study shows that boosting immune responses after a third vaccine dose reduces susceptibility to COVID-19 caused by the Omicron variant. Results presented in this study are useful for future formulations of COVID-19 vaccination policies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Nanomedicine ; 45: 102595, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36031045

RESUMEN

The development of safe and effective vaccine formulations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a hallmark in the history of vaccines. Here we report a COVID-19 subunit vaccine based on a SARS-CoV-2 Spike protein receptor binding domain (RBD) incorporated into nano-multilamellar vesicles (NMV) associated with monophosphoryl lipid A (MPLA). The results based on immunization of C57BL/6 mice demonstrated that recombinant antigen incorporation into NMVs improved antibody and T-cell responses without inducing toxic effects under both in vitro and in vivo conditions. Administration of RBD-NMV-MPLA formulations modulated antigen avidity and IgG subclass responses, whereas MPLA incorporation improved the activation of CD4+/CD8+ T-cell responses. In addition, immunization with the complete vaccine formulation reduced the number of doses required to achieve enhanced serum virus-neutralizing antibody titers. Overall, this study highlights NMV/MPLA technology, displaying the performance improvement of subunit vaccines against SARS-CoV-2, as well as other infectious diseases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , Inmunoglobulina G , Lípidos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad
5.
Nanomedicine ; 32: 102334, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188909

RESUMEN

Self-assembling proteins may be generated after the addition of short specific amino acid sequences at both the N- and C-terminal ends. To date, this approach has not been evaluated regarding the impact of self-assembled proteins on the induction of immune responses. In the present study, we report the application of this experimental approach to the immunogenicity of protein antigens by measuring the antibody responses in mice immunized with nanoparticles made with a recombinant form of Zika virus nonstructural protein 1 (∆NS1). The results clearly indicated that ∆NS1-derived nanoparticles (NP-∆NS1) are assembled into a 3-dimensional structure with a high degree of multimerization. While ∆NS1 proved to be a weak immunogen, immunization with NP-∆NS1 enhanced subunit vaccines' immunogenicity with improved longevity in vaccinated mice. Thus, immunization with self-assembled antigens (nanovaccines) represents a new and promising strategy to enhance NS1-specific antibodies' induction based on purified recombinant proteins.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Nanopartículas/química , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/inmunología , Virus Zika/inmunología , Animales , Epítopos/inmunología , Femenino , Inmunización , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL
6.
Nanomedicine ; 37: 102445, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34303841

RESUMEN

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Asunto(s)
Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Liposomas/inmunología , Proteínas del Envoltorio Viral/genética , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/efectos de los fármacos , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/terapia , Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Humanos , Liposomas/química , Liposomas/farmacología , Ratones , Nanopartículas/química , Proteínas del Envoltorio Viral/farmacología , Vacunas Virales/inmunología
7.
J Infect Dis ; 216(2): 172-181, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838147

RESUMEN

Background: Zika virus (ZIKV) infections have been linked to different levels of clinical outcomes, ranging from mild rash and fever to severe neurological complications and congenital malformations. Methods: We investigated the clinical and immunological response, focusing on the immune mediators profile in 95 acute ZIKV-infected adult patients from Campinas, Brazil. These patients included 6 pregnant women who later delivered during the course of this study. Clinical observations were recorded during hospitalization. Levels of 45 immune mediators were quantified using multiplex microbead-based immunoassays. Results: Whereas 11.6% of patients had neurological complications, 88.4% displayed mild disease of rash and fever. Several immune mediators were specifically higher in ZIKV-infected patients, and levels of interleukin 10, interferon gamma-induced protein 10 (IP-10), and hepatocyte growth factor differentiated between patients with or without neurological complications. Interestingly, higher levels of interleukin 22, monocyte chemoattractant protein 1, TNF-α, and IP-10 were observed in ZIKV-infected pregnant women carrying fetuses with fetal growth-associated malformations. Notably, infants with congenital central nervous system deformities had significantly higher levels of interleukin 18 and IP-10 but lower levels of hepatocyte growth factor than those without such abnormalities born to ZIKV-infected mothers. Conclusions: This study identified several key markers for the control of ZIKV pathogenesis. This will allow a better understanding of the molecular mechanisms of ZIKV infection in patients.


Asunto(s)
Citocinas/sangre , Malformaciones del Sistema Nervioso/epidemiología , Complicaciones Infecciosas del Embarazo/epidemiología , Infección por el Virus Zika/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Brasil/epidemiología , Niño , Femenino , Retardo del Crecimiento Fetal/virología , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Malformaciones del Sistema Nervioso/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Resultado del Embarazo , Carga Viral , Adulto Joven , Virus Zika , Infección por el Virus Zika/complicaciones
10.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39056544

RESUMEN

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Ratones , Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Células HEK293 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Ratones Endogámicos BALB C , Femenino , Multimerización de Proteína , Dominios Proteicos/inmunología , Unión Proteica
11.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464151

RESUMEN

Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.

12.
Cells ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273061

RESUMEN

Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.


Asunto(s)
Retrovirus Endógenos , Interleucinas , Factores de Transcripción , Trofoblastos , Infección por el Virus Zika , Virus Zika , Humanos , Trofoblastos/virología , Trofoblastos/metabolismo , Femenino , Infección por el Virus Zika/virología , Infección por el Virus Zika/genética , Retrovirus Endógenos/genética , Embarazo , Interleucinas/genética , Interleucinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Placenta/virología , Placenta/metabolismo , Línea Celular
13.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071292

RESUMEN

The emergence of highly contagious and immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has required reformulation of coronavirus disease 2019 (COVID-19) vaccines to target those new variants specifically. While previous infections and booster vaccinations can enhance variant neutralization, it is unclear whether the monovalent version, administered using either mRNA or protein-based vaccine platforms, can elicit de novo B-cell responses specific for Omicron XBB.1.5 variants. Here, we dissected the genetic antibody repertoire of 603 individual plasmablasts derived from five individuals who received a monovalent XBB.1.5 vaccination either with mRNA (Moderna or Pfizer/BioNtech) or adjuvanted protein (Novavax). From these sequences, we expressed 100 human monoclonal antibodies and determined binding, affinity and protective potential against several SARS-CoV-2 variants, including JN.1. We then select two vaccine-induced XBB.1.5 mAbs, M2 and M39. M2 mAb was a de novo, antibody, i.e., specific for XBB.1.5 but not ancestral SARS-CoV-2. M39 bound and neutralized both XBB.1.5 and JN.1 strains. Our high-resolution cryo-electron microscopy (EM) structures of M2 and M39 in complex with the XBB.1.5 spike glycoprotein defined the epitopes engaged and revealed the molecular determinants for the mAbs' specificity. These data show, at the molecular level, that monovalent, variant-specific vaccines can elicit functional antibodies, and shed light on potential functional and genetic differences of mAbs induced by vaccinations with different vaccine platforms.\.

14.
Probiotics Antimicrob Proteins ; 15(6): 1513-1528, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36346611

RESUMEN

Individuals with chronic obstructive pulmonary disease (COPD) are more susceptible to exacerbation crisis triggered by secondary lung infections due to the dysfunction of antiviral signaling, principally via suppression of IFN-γ. Although the probiotic is known for controlling pulmonary inflammation in COPD, the influence of the Lactobacillus rhamnosus (Lr) on antiviral signaling in bronchial epithelium exposed to cigarette smoke extract (CSE) and viruses, remains unknown. Thus, the present study investigated the Lr effect on the antiviral signaling and the secretion of inflammatory mediators from bronchial epithelial cells (16HBE cells) exposed to CSE and SARS-CoV-2. The 16HBE cells were cultured, treated with Lr, stimulated with CSE, and infected with SARS-CoV-2. The cellular viability was evaluated using the MTT assay and cytotoxicity measured by lactate dehydrogenase (LDH) activity. The viral load, TLR2, TLR3, TLR4, TLR7, TLR8, MAVS, MyD88, and TRIF were quantified using specific PCR. The pro-inflammatory mediators were measured by a multiplex biometric immunoassay, and angiotensin converting enzyme 2 (ACE2) activity, NF-κB, RIG-I, MAD5, and IRF3 were measured using specific ELISA kits. Lr decreased viral load, ACE2, pro-inflammatory mediators, TLR2, TLR4, NF-κB, TLR3, TLR7, and TLR8 as well as TRIF and MyD88 expression in CSE and SARS-CoV-2 -exposed 16HBE cells. Otherwise, RIG-I, MAD5, IRF3, IFN-γ, and the MAVS expression were restored in 16HBE cells exposed to CSE and SARS-CoV-2 and treated with Lr. Lr induces antiviral signaling associated to IFN-γ secreting viral sensors and attenuates cytokine storm associated to NF-κB in bronchial epithelial cells, supporting its emerging role in prevention of COPD exacerbation.


Asunto(s)
COVID-19 , Fumar Cigarrillos , Lacticaseibacillus rhamnosus , Enfermedad Pulmonar Obstructiva Crónica , Humanos , SARS-CoV-2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Fumar Cigarrillos/efectos adversos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2 , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , COVID-19/metabolismo , Células Epiteliales/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Antivirales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
15.
Viruses ; 15(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37515134

RESUMEN

The Zika virus (ZIKV) epidemic brought new discoveries regarding arboviruses, especially flaviviruses, as ZIKV was described as sexually and vertically transmitted. The latter shows severe consequences for the embryo/fetus, such as congenital microcephaly and deficiency of the neural system, currently known as Congenital ZIKV Syndrome (CZS). To better understand ZIKV dynamics in trophoblastic cells present in the first trimester of pregnancy (BeWo, HTR-8, and control cell HuH-7), an experiment of viral kinetics was performed for African MR766 low passage and Asian-Brazilian IEC ZIKV lineages. The results were described independently and demonstrated that the three placental cells lines are permissive and susceptible to ZIKV. We noticed cytopathic effects that are typical in in vitro viral infection in BeWo and HTR-8. Regarding kinetics, MR766lp showed peaks of viral loads in 24 and 48 hpi for all cell types tested, as well as marked cells death after peak production. On the other hand, the HTR-8 lineage inoculated with ZIKV-IEC exhibited increased viral production in 144 hpi, with a peak between 24 and 96 hpi. Furthermore, IEC had peak variations of viral production for BeWo in 144 hpi. Considering such in vitro results, the hypothesis that maternal fetal transmission is probably a way of virus transmission between the mother and the embryo/fetus is maintained.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Embarazo , Femenino , Placenta , Brasil , Cinética , Línea Celular
16.
Viruses ; 15(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37766342

RESUMEN

Dengue is an infectious disease of global health concern that continues to require surveillance. Serological testing has been used to investigate dengue-infected patients, but specificity is affected by the co-circulation of ZIKA virus (ZIKV), which shares extensive antigen similarities. The goal of this study was the development of a specific dengue virus (DENV) IgG ELISA based on a multi-epitope NS1-based antigen for antibody detection. The multi-epitope protein (T-ΔNS1), derived from a fragment of the NS1-protein of the four DENV serotypes, was expressed in Escherichia coli and purified via affinity chromatography. The antigenicity and specificity were evaluated with sera of mice infected with DENV-1-4 or ZIKV or after immunization with the recombinant ΔNS1 proteins. The performance of the T-ΔNS1-based IgG ELISA was also determined with human serum samples. The results demonstrate that the DENV T-ΔNS1 was specifically recognized by the serum IgG of dengue-infected mice or humans but showed no or reduced reactivity with ZIKV-infected subjects. Based on the available set of clinical samples, the ELISA based on the DENV T-ΔNS1 achieved 77.42% sensitivity and 88.57% specificity. The results indicate that the T-ΔNS1 antigen is a promising candidate for the development of specific serological analysis.

17.
Sci Rep ; 13(1): 16821, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798298

RESUMEN

Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.


Asunto(s)
COVID-19 , Pyrococcus furiosus , Humanos , Animales , Ratones , Epítopos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Pyrococcus furiosus/metabolismo , Anticuerpos Antivirales , Proteínas del Envoltorio Viral , SARS-CoV-2 , Péptidos/química , Anticuerpos Neutralizantes
18.
Microbiol Spectr ; 11(6): e0285723, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37909777

RESUMEN

IMPORTANCE: Several additional COVID-19 vaccine doses were administered in the Brazilian population to prevent the disease caused by the B.1.1.529 (Omicron) variant. The efficacy of a third dose as a booster is already well described. However, it is important to clarify the humoral immune response gain induced by a fourth dose. In this study, we evaluate the effect of the fourth COVID-19 vaccine dose in a diverse Brazilian population, considering a real-life context. Our study reveals that the fourth dose of the COVID-19 vaccine increased the neutralizing antibody response against SARS-CoV-2 Omicron and significantly contributed in the reduction of the disease caused by this variant.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Brasil , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales
19.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992364

RESUMEN

Zika virus (ZIKV), a mosquito-borne pathogen, is an emerging arbovirus associated with sporadic symptomatic cases of great medical concern, particularly among pregnant women and newborns affected with neurological disorders. Serological diagnosis of ZIKV infection is still an unmet challenge due to the co-circulation of the dengue virus, which shares extensive sequence conservation of structural proteins leading to the generation of cross-reactive antibodies. In this study, we aimed to obtain tools for the development of improved serological tests for the detection of ZIKV infection. Polyclonal sera (pAb) and a monoclonal antibody (mAb 2F2) against a recombinant form of the ZIKV nonstructural protein 1 (NS1) allowed the identification of linear peptide epitopes of the NS1 protein. Based on these findings, six chemically synthesized peptides were tested both in dot blot and ELISA assays using convalescent sera collected from ZIKV-infected patients. Two of these peptides specifically detected the presence of ZIKV antibodies and proved to be candidates for the detection of ZIKV-infected subjects. The availability of these tools opens perspectives for the development of NS1-based serological tests with enhanced sensitivity regarding other flaviviruses.


Asunto(s)
Proteínas no Estructurales Virales , Infección por el Virus Zika , Femenino , Humanos , Recién Nacido , Embarazo , Anticuerpos Monoclonales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Péptidos , Pruebas Serológicas , Proteínas no Estructurales Virales/aislamiento & purificación , Virus Zika
20.
Front Cell Infect Microbiol ; 12: 787411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719329

RESUMEN

Reliable serological tests for the detection of SARS-CoV-2 antibodies among infected or vaccinated individuals are important for epidemiological and clinical studies. Low-cost approaches easily adaptable to high throughput screenings, such as Enzyme-Linked Immunosorbent Assays (ELISA) or electrochemiluminescence immunoassay (ECLIA), can be readily validated using different SARS-CoV-2 antigens. A total of 1,119 serum samples collected between March and July of 2020 from health employees and visitors to the University Hospital at the University of São Paulo were screened with the Elecsys® Anti-SARS-CoV-2 immunoassay (Elecsys) (Roche Diagnostics) and three in-house ELISAs that are based on different antigens: the Nucleoprotein (N-ELISA), the Receptor Binding Domain (RBD-ELISA), and a portion of the S1 protein (ΔS1-ELISA). Virus neutralization test (CPE-VNT) was used as the gold standard to validate the serological assays. We observed high sensitivity and specificity values with the Elecsys (96.92% and 98.78%, respectively) and N-ELISA (93.94% and 94.40%, respectively), compared with RBD-ELISA (90.91% sensitivity and 88.80% specificity) and the ΔS1-ELISA (77.27% sensitivity and 76% specificity). The Elecsys® proved to be a reliable SARS-CoV-2 serological test. Similarly, the recombinant SARS-CoV-2 N protein displayed good performance in the ELISA tests. The availability of reliable diagnostic tests is critical for the precise determination of infection rates, particularly in countries with high SARS-CoV-2 infection rates, such as Brazil. Collectively, our results indicate that the development and validation of new serological tests based on recombinant proteins may provide new alternatives for the SARS-CoV-2 diagnostic market.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Brasil/epidemiología , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Hospitales , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA