Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102897, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639028

RESUMEN

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , ARN Mensajero , Regiones no Traducidas , Animales , Bovinos , Ratas , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Exones , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas/fisiología
2.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032268

RESUMEN

Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Nefronas/embriología , Nefronas/crecimiento & desarrollo , Organogénesis/genética , Vía de Señalización Wnt/genética , Animales , Proteína Axina/metabolismo , Diferenciación Celular/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre/citología , Proteínas Wnt/metabolismo
3.
Mol Psychiatry ; 27(8): 3247-3261, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35618883

RESUMEN

Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.


Asunto(s)
Dopamina , Esquizofrenia , Animales , Ratones , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Esquizofrenia/metabolismo , Cuerpo Estriado/metabolismo , Transducción de Señal
4.
Alcohol Alcohol ; 57(4): 405-412, 2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-33893472

RESUMEN

AIMS: Recently we developed a model to study alcohol-seeking behaviour after withdrawal in a social context in female mice. The model raised several questions that we were eager to address to improve methodology. METHODS: In our model, female mice were group-housed in automated cages with three conditioned (CS+) corners and water in both sides of one separate non-conditioned corner. Water was available with opened doors at all the time of training. We established conditioning by pairing alcohol drinking with light cues. Here, we introduced prolonged access to increasing concentrations of alcohol instead of intermittent access. To study motivation to drink alcohol, we carried out the extinction tests on withdrawal days 1 (WD1) and 10 (WD10). During tests, the light cues were present in conditioned corners, but there was no liquid in the bottles. RESULTS: We found that the number of visits and nosepokes in the CS+ corner in the alcohol group was much higher than in the water group. Also, during training, the consumption of alcohol was increasing. In the extinction tests, we found that the number of nosepokes in the CS+ corner increased in the alcohol group on both WD1 and WD10. CONCLUSIONS: Our study supports that alcohol-seeking behaviour after withdrawal can be modelled and studied in group-housed animals and environments without social isolation.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Animales , Señales (Psicología) , Femenino , Ratones , Ratones Endogámicos C57BL , Medio Social , Agua
5.
Eur J Neurosci ; 53(8): 2469-2482, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481269

RESUMEN

Parvalbumin-positive interneurons (PV+) are a key component of inhibitory networks in the brain and are known to modulate memory and learning by shaping network activity. The mechanisms of PV+ neuron generation and maintenance are not fully understood, yet current evidence suggests that signalling via the glial cell line-derived neurotrophic factor (GDNF) receptor GFRα1 positively modulates the migration and differentiation of PV+ interneurons in the cortex. Whether GDNF also regulates PV+ cells in the hippocampus is currently unknown. In this study, we utilized a Gdnf "hypermorph" mouse model where GDNF is overexpressed from the native gene locus, providing greatly increased spatial and temporal specificity of protein expression over established models of ectopic expression. Gdnfwt/hyper mice demonstrated impairments in long-term memory performance in the Morris water maze test and an increase in inhibitory tone in the hippocampus measured electrophysiologically in acute brain slice preparations. Increased PV+ cell number was confirmed immunohistochemically in the hippocampus and in discrete cortical areas and an increase in epileptic seizure threshold was observed in vivo. The data consolidate prior evidence for the actions of GDNF as a regulator of PV+ cell development in the cortex and demonstrate functional effects upon network excitability via modulation of functional GABAergic signalling and under epileptic challenge.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Memoria Espacial , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Ratones , Parvalbúminas/metabolismo
6.
J Biomed Sci ; 28(1): 87, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34923968

RESUMEN

BACKGROUND: Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. METHODS: We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni's post hoc test. The student's t-test was used to analyze qPCR data. RESULTS: The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. CONCLUSIONS: The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Ansia , Regulación de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Núcleo Accumbens/metabolismo , Animales , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Ratones Endogámicos C57BL , Conducta Social
7.
Neurobiol Dis ; 134: 104696, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31783118

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson's disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf-/-), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf-/- mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf-/- mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf-/- male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf-/- mouse brain is altered. The deficiencies of Cdnf-/- mice, therefore, are reminiscent of those seen in early stages of Parkinson's disease.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiología , Dopamina/metabolismo , Sistema Nervioso Entérico/patología , Sistema Nervioso Entérico/fisiopatología , Factores de Crecimiento Nervioso/fisiología , Neuronas/patología , Neuronas/fisiología , Animales , Apoptosis , Autofagia , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/genética
9.
J Neurosci ; 37(6): 1581-1590, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28096470

RESUMEN

Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function.


Asunto(s)
Anfetamina/farmacología , Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Animales , Encéfalo/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria
10.
Eur J Neurosci ; 48(6): 2354-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144349

RESUMEN

Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene-function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time-consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high-capacity analysis. We implemented whole-slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)-immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud-embedded Aiforia™ platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Redes Neurales de la Computación , Sustancia Negra/metabolismo , Animales , Masculino , Ratones , Trastornos Parkinsonianos/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados , Tirosina 3-Monooxigenasa/metabolismo
11.
PLoS Genet ; 11(12): e1005710, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26681446

RESUMEN

Degeneration of nigrostriatal dopaminergic system is the principal lesion in Parkinson's disease. Because glial cell line-derived neurotrophic factor (GDNF) promotes survival of dopamine neurons in vitro and in vivo, intracranial delivery of GDNF has been attempted for Parkinson's disease treatment but with variable success. For improving GDNF-based therapies, knowledge on physiological role of endogenous GDNF at the sites of its expression is important. However, due to limitations of existing genetic model systems, such knowledge is scarce. Here, we report that prevention of transcription of Gdnf 3'UTR in Gdnf endogenous locus yields GDNF hypermorphic mice with increased, but spatially unchanged GDNF expression, enabling analysis of postnatal GDNF function. We found that increased level of GDNF in the central nervous system increases the number of adult dopamine neurons in the substantia nigra pars compacta and the number of dopaminergic terminals in the dorsal striatum. At the functional level, GDNF levels increased striatal tissue dopamine levels and augmented striatal dopamine release and re-uptake. In a proteasome inhibitor lactacystin-induced model of Parkinson's disease GDNF hypermorphic mice were protected from the reduction in striatal dopamine and failure of dopaminergic system function. Importantly, adverse phenotypic effects associated with spatially unregulated GDNF applications were not observed. Enhanced GDNF levels up-regulated striatal dopamine transporter activity by at least five fold resulting in enhanced susceptibility to 6-OHDA, a toxin transported into dopamine neurons by DAT. Further, we report how GDNF levels regulate kidney development and identify microRNAs miR-9, miR-96, miR-133, and miR-146a as negative regulators of GDNF expression via interaction with Gdnf 3'UTR in vitro. Our results reveal the role of GDNF in nigrostriatal dopamine system postnatal development and adult function, and highlight the importance of correct spatial expression of GDNF. Furthermore, our results suggest that 3'UTR targeting may constitute a useful tool in analyzing gene function.


Asunto(s)
Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedad de Parkinson Secundaria/genética , Sustancia Negra/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidad , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Humanos , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Ratones , Neostriado/metabolismo , Neostriado/patología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Sustancia Negra/patología
12.
Neurobiol Dis ; 97(Pt B): 80-89, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26829643

RESUMEN

A targeted effort to identify novel neurotrophic factors for midbrain dopaminergic neurons resulted in the isolation of GDNF (glial cell line-derived neurotrophic factor) from the supernatant of a rat glial cell line in 1993. Over two decades and 1200 papers later, the GDNF ligand family and their different receptor systems are now recognized as one of the major neurotrophic networks in the nervous system, important for the development, maintenance and function of a variety of neurons and glial cells. The many ways in which the four members of the GDNF ligand family can signal and function allow these factors to take part in the control of multiple types of processes, from neuronal survival to axon guidance and synapse formation in the developing nervous system, to synaptic function and regenerative responses in the adult. In this review, we will briefly summarize basic aspects of GDNF signaling mechanisms and receptor systems and then review our current knowledge of the physiology of GDNF activities in the central nervous system, with an eye to its relevance for neurodegenerative and neuropsychiatric diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Humanos
13.
Cell Mol Life Sci ; 72(9): 1779-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25601223

RESUMEN

During the past decade, the identification of microRNA (miR) targets has become common laboratory practice, and various strategies are now used to detect interactions between miRs and their mRNA targets. However, the current lack of a standardized identification process often leads to incomplete and/or conflicting results. Here, we review the problems most commonly encountered when verifying miR-mRNA interactions, and we propose a workflow for future studies. To illustrate the challenges faced when validating a miR target, we discuss studies in which the regulation of brain-derived neurotrophic factor by miRs was investigated, and we highlight several controversies that emerged from these studies. Finally, we discuss the therapeutic use of miR inhibitors, and we discuss several questions that should be addressed before proceeding to preclinical testing.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Regiones no Traducidas 3' , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/análisis , MicroARNs/genética , ARN Mensajero/análisis , ARN Mensajero/genética
14.
Cell Mol Life Sci ; 71(22): 4443-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24804980

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a secreted protein of the neurotrophin family that regulates brain development, synaptogenesis, memory and learning, as well as development of peripheral organs, such as angiogenesis in the heart and postnatal growth and repair of skeletal muscle. However, while precise regulation of BDNF levels is an important determinant in defining the biological outcome, the role of microRNAs (miRs) in modulating BDNF expression has not been extensively analyzed. Using in silico approaches, reporter systems, and analysis of endogenous BDNF, we show that miR-1, miR-10b, miR-155, and miR-191 directly repress BDNF through binding to their predicted sites in BDNF 3'UTR. We find that the overexpression of miR-1 and miR-10b suppresses endogenous BDNF protein levels and that silencing endogenous miR-10b increases BDNF mRNA and protein levels. Furthermore, we show that miR-1/206 binding sites within BDNF 3'UTR are used in differentiated myotubes but not in undifferentiated myoblasts. Finally, our data from two cell lines suggest that endogenous miR-1/206 and miR-10 family miRs act cooperatively in suppressing BDNF through their predicted sites in BDNF 3'UTR. In conclusion, our results highlight miR-1, miR-10b, miR-155, and miR-191 as novel regulators of BDNF long and short 3'UTR isoforms, supporting future research in different physiological and pathological contexts.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , MicroARNs/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/genética , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia
15.
Cancer Cell ; 10(2): 121-32, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16904611

RESUMEN

Inborn defects in nucleotide excision DNA repair (NER) can paradoxically result in elevated cancer incidence (xeroderma pigmentosum [XP]) or segmental progeria without cancer predisposition (Cockayne syndrome [CS] and trichothiodystrophy [TTD]). We report generation of a knockin mouse model for the combined disorder XPCS with a G602D-encoding mutation in the Xpd helicase gene. XPCS mice are the most skin cancer-prone NER model to date, and we postulate an unusual NER dysfunction that is likely responsible for this susceptibility. XPCS mice also displayed symptoms of segmental progeria, including cachexia and progressive loss of germinal epithelium. Like CS fibroblasts, XPCS and TTD fibroblasts from human and mouse showed evidence of defective repair of oxidative DNA lesions that may underlie these segmental progeroid symptoms.


Asunto(s)
Síndrome de Cockayne/patología , Progeria/patología , Neoplasias Cutáneas/patología , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo , Xerodermia Pigmentosa/patología , Animales , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Transformada , Síndrome de Cockayne/complicaciones , Síndrome de Cockayne/metabolismo , Reparación del ADN , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Ratones , Ratones Mutantes , Mutación , Papiloma/etiología , Papiloma/metabolismo , Papiloma/patología , Fenotipo , Progeria/complicaciones , Progeria/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
16.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920687

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Asunto(s)
Axones , Cuerpo Estriado , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Proteínas Proto-Oncogénicas c-ret , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Axones/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/citología , Ratones , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas Espinosas Medianas
17.
Nature ; 448(7149): 73-7, 2007 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-17611540

RESUMEN

In Parkinson's disease, brain dopamine neurons degenerate most prominently in the substantia nigra. Neurotrophic factors promote survival, differentiation and maintenance of neurons in developing and adult vertebrate nervous system. The most potent neurotrophic factor for dopamine neurons described so far is the glial-cell-line-derived neurotrophic factor (GDNF). Here we have identified a conserved dopamine neurotrophic factor (CDNF) as a trophic factor for dopamine neurons. CDNF, together with its previously described vertebrate and invertebrate homologue the mesencephalic-astrocyte-derived neurotrophic factor, is a secreted protein with eight conserved cysteine residues, predicting a unique protein fold and defining a new, evolutionarily conserved protein family. CDNF (Armetl1) is expressed in several tissues of mouse and human, including the mouse embryonic and postnatal brain. In vivo, CDNF prevented the 6-hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in a rat experimental model of Parkinson's disease. A single injection of CDNF before 6-OHDA delivery into the striatum significantly reduced amphetamine-induced ipsilateral turning behaviour and almost completely rescued dopaminergic tyrosine-hydroxylase-positive cells in the substantia nigra. When administered four weeks after 6-OHDA, intrastriatal injection of CDNF was able to restore the dopaminergic function and prevent the degeneration of dopaminergic neurons in substantia nigra. Thus, CDNF was at least as efficient as GDNF in both experimental settings. Our results suggest that CDNF might be beneficial for the treatment of Parkinson's disease.


Asunto(s)
Factores de Crecimiento Nervioso/fisiología , Neuronas/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Clonación Molecular , Secuencia Conservada , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Humanos , Hibridación in Situ , Masculino , Ratones , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Oxidopamina , Enfermedad de Parkinson/tratamiento farmacológico , Procesamiento Proteico-Postraduccional , ARN Mensajero , Ratas , Ratas Wistar , Sustancia Negra/metabolismo
18.
Biomolecules ; 13(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37759827

RESUMEN

The increase in presynaptic striatal dopamine is the main dopaminergic abnormality in schizophrenia (SCZ). SCZ is primarily treated by modulating the activity of monoamine systems, with a focus on dopamine and serotonin receptors. Glial cell line-derived neurotrophic factor (GDNF) is a strong dopaminergic factor, that recently was shown to correlate with SCZ in human CSF and in striatal tissue. A 2-3-fold increase in GDNF in the brain was sufficient to induce SCZ-like dopaminergic and behavioural changes in mice. Here, we analysed the effect of acute, chronic, and embryonic methamphetamine, a drug known to enhance the risk of psychosis, on Gdnf and its receptors, Gfra1 and Ret, as well as on monoamine metabolism-related gene expression in the mouse brain. We found that acute methamphetamine application increases Gdnf expression in the striatum and chronic methamphetamine decreases the striatal expression of GDNF receptors Gfra1 and Ret. Both chronic and acute methamphetamine treatment upregulated the expression of genes related to dopamine and serotonin metabolism in the striatum, prefrontal cortex, and substantia nigra. Our results suggest a potential mechanism as to how methamphetamine elicits individual psychosis risk in young adults-variation in initial striatal GDNF induction and subsequent GFRα1 and RET downregulation may determine individual susceptibility to psychosis. Our results may guide future experiments and precision medicine development for methamphetamine-induced psychosis using GDNF/GFRa1/RET antagonists.

19.
Biomolecules ; 13(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37238631

RESUMEN

Cocaine addiction is a serious condition with potentially lethal complications and no current pharmacological approaches towards treatment. Perturbations of the mesolimbic dopamine system are crucial to the establishment of cocaine-induced conditioned place preference and reward. As a potent neurotrophic factor modulating the function of dopamine neurons, glial cell line-derived neurotrophic factor (GDNF) acting through its receptor RET on dopamine neurons may provide a novel therapeutic avenue towards psychostimulant addiction. However, current knowledge on endogenous GDNF and RET function after the onset of addiction is scarce. Here, we utilized a conditional knockout approach to reduce the expression of the GDNF receptor tyrosine kinase RET from dopamine neurons in the ventral tegmental area (VTA) after the onset of cocaine-induced conditioned place preference. Similarly, after establishing cocaine-induced conditioned place preference, we studied the effect of conditionally reducing GDNF in the ventral striatum nucleus accumbens (NAc), the target of mesolimbic dopaminergic innervation. We find that the reduction of RET within the VTA hastens cocaine-induced conditioned place preference extinction and reduces reinstatement, while the reduction of GDNF within the NAc does the opposite: prolongs cocaine-induced conditioned place preference and increases preference during reinstatement. In addition, the brain-derived neurotrophic factor (BDNF) was increased and key dopamine-related genes were reduced in the GDNF cKO mutant animals after cocaine administration. Thus, RET antagonism in the VTA coupled with intact or enhanced accumbal GDNF function may provide a new approach towards cocaine addiction treatment.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Núcleo Accumbens/metabolismo
20.
Heliyon ; 9(3): e13844, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36923835

RESUMEN

The 3' untranslated regions (UTRs) modulate gene expression levels by regulating mRNA stability and translation. We previously showed that the replacement of the negative regulatory elements from the 3'UTR of glial cell line-derived neurotrophic factor (GDNF) resulted in increased endogenous GDNF expression while retaining its normal spatiotemporal expression pattern. Here, we have developed a methodology for the generation of in vivo hyper- and hypomorphic alleles via 3'UTR targeting using the CRISPR/Cas9 system. We demonstrate that CRISPR/Cas9-mediated excision of a long inhibitory sequence from Gdnf native 3'UTR in mouse zygotes increases the levels of endogenous GDNF with similar phenotypic alterations in embryonic kidney development as we described in GDNF constitutive and conditional hypermorphic mice. Furthermore, we show that CRISPR/Cas9-mediated targeting of 3'UTRs in vivo allows the modulation of the expression levels of two other morphogens, Gdf11 and Bdnf. Together, our work demonstrates the power of in vivo 3'UTR editing using the CRISPR/Cas9 system to create hyper- and hypomorphic alleles, suggesting wide applicability in studies on gene function and potentially, in gene therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA