Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Res ; 194: 47-52, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27938862

RESUMEN

Most Escherichia coli strains are naturally unable to grow on 1,2-propanediol (PDO) as a sole carbon source. Recently, however, a K-12 descendent E. coli strain was evolved to grow on 1,2-PDO, and it was hypothesized that this evolved ability was dependent on the aldehyde dehydrogenase, AldA, which is highly conserved among members of the family Enterobacteriacea. To test this hypothesis, we first performed computational model simulation, which confirmed the essentiality of the aldA gene for 1,2-PDO utilization by the evolved PDO-degrading E. coli. Next, we deleted the aldA gene from the evolved strain, and this deletion was sufficient to abolish the evolved phenotype. On re-introducing the gene on a plasmid, the evolved phenotype was restored. These findings provide experimental evidence for the computationally predicted role of AldA in 1,2-PDO utilization, and represent a good example of E. coli robustness, demonstrated by the bacterial deployment of a generalist enzyme (here AldA) in multiple pathways to survive carbon starvation and to grow on a non-native substrate when no native carbon source is available.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Escherichia coli K12/enzimología , Propilenglicol/metabolismo , Adaptación Fisiológica/fisiología , Aldehído Deshidrogenasa/genética , Secuencia de Bases , ADN Complementario/genética , Evolución Molecular Dirigida , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Redes y Vías Metabólicas , Fenotipo , Plásmidos/genética , ARN Bacteriano/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Secuencia
2.
Front Microbiol ; 6: 958, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441892

RESUMEN

Mathematical models of biochemical networks form a cornerstone of bacterial systems biology. Inconsistencies between simulation output and experimental data point to gaps in knowledge about the fundamental biology of the organism. One such inconsistency centers on the gene aldA in Escherichia coli: it is essential in a computational model of E. coli metabolism, but experimentally it is not. Here, we reconcile this disparity by providing evidence that aldA and prpC form a synthetic lethal pair, as the double knockout could only be created through complementation with a plasmid-borne copy of aldA. Moreover, virtual and biological screening against the two proteins led to a set of compounds that inhibited the growth of E. coli and Salmonella enterica serovar Typhimurium synergistically at 100-200 µM individual concentrations. These results highlight the power of metabolic models to drive basic biological discovery and their potential use to discover new combination antibiotics.

3.
Sci Rep ; 5: 16025, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26531810

RESUMEN

Mathematical models of metabolism from bacterial systems biology have proven their utility across multiple fields, for example metabolic engineering, growth phenotype simulation, and biological discovery. The usefulness of the models stems from their ability to compute a link between genotype and phenotype, but their ability to accurately simulate gene-gene interactions has not been investigated extensively. Here we assess how accurately a metabolic model for Escherichia coli computes one particular type of gene-gene interaction, synthetic lethality, and find that the accuracy rate is between 25% and 43%. The most common failure modes were incorrect computation of single gene essentiality and biological information that was missing from the model. Moreover, we performed virtual and biological screening against several synthetic lethal pairs to explore whether two-compound formulations could be found that inhibit the growth of Gram-negative bacteria. One set of molecules was identified that, depending on the concentrations, inhibits E. coli and S. enterica serovar Typhimurium in an additive or antagonistic manner. These findings pinpoint specific ways in which to improve the predictive ability of metabolic models, and highlight one potential application of systems biology to drug discovery and translational medicine.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli O157/genética , Genes Letales/genética , Klebsiella pneumoniae/genética , Salmonella typhimurium/genética , Biología de Sistemas/métodos , Yersinia pestis/genética , Antibacterianos/síntesis química , Combinación de Medicamentos , Descubrimiento de Drogas , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Enfermedades Transmitidas por los Alimentos/microbiología , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Modelos Teóricos , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Yersinia pestis/crecimiento & desarrollo , Yersinia pestis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA