Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2321972121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008677

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.


Asunto(s)
Antioxidantes , COVID-19 , Ratones Transgénicos , Mitocondrias , Fosforilación Oxidativa , SARS-CoV-2 , Animales , Ratones , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Pulmón/virología , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Catalasa/metabolismo , Catalasa/genética , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Inmunidad Innata
2.
Nature ; 571(7766): 515-520, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31341297

RESUMEN

The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Protones , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Coenzimas/metabolismo , Ácidos Grasos/metabolismo , Transporte Iónico , Masculino , Ratones , Consumo de Oxígeno
3.
Pharmacol Res ; 204: 107170, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614374

RESUMEN

To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.


Asunto(s)
COVID-19 , Mitocondrias , Fosforilación Oxidativa , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/genética , COVID-19/virología , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Epigénesis Genética , Metabolismo Energético , Epigenómica , Animales
4.
Am J Pathol ; 190(2): 426-441, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837950

RESUMEN

Collagen VI (COL6) is known for its role in a spectrum of congenital muscular dystrophies, which are often accompanied by respiratory dysfunction. However, little is known regarding the function of COL6 in the lung. We confirmed the presence of COL6 throughout the basement membrane region of mouse lung tissue. Lung structure and organization were studied in a previously described Col6a1-/- mouse, which does not produce detectable COL6 in the lung. The Col6a1-/- mouse displayed histopathologic alveolar and airway abnormalities. The airspaces of Col6a1-/- lungs appeared simplified, with larger (29%; P < 0.01) and fewer (31%; P < 0.001) alveoli. These airspace abnormalities included reduced isolectin B4+ alveolar capillaries and surfactant protein C-positive alveolar epithelial type-II cells. Alterations in lung function consistent with these histopathologic changes were evident. Col6a1-/- mice also displayed multiple airway changes, including increased branching (59%; P < 0.001), increased mucosal thickness (34%; P < 0.001), and increased epithelial cell density (13%; P < 0.001). Comprehensive transcriptome analysis revealed that the loss of COL6 is associated with reductions in integrin-paxillin-phosphatidylinositol 3-kinase signaling in vivo. In vitro, COL6 promoted steady-state phosphorylated paxillin levels and reduced cell density (16% to 28%; P < 0.05) at confluence. Inhibition of phosphatidylinositol 3-kinase, or its downstream effectors, resulted in increased cell density to a level similar to that seen on matrices lacking COL6.


Asunto(s)
Membrana Basal/patología , Colágeno Tipo VI/fisiología , Células Epiteliales/patología , Pulmón/patología , Alveolos Pulmonares/patología , Animales , Membrana Basal/metabolismo , Tamaño de la Célula , Células Epiteliales/metabolismo , Femenino , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/metabolismo , Transducción de Señal
5.
Fetal Diagn Ther ; 46(5): 306-312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30861524

RESUMEN

BACKGROUND: In an effort to mitigate the major morbidities and mortality associated with extreme prematurity, we have developed an EXTrauterine Environment for Neonatal Development (EXTEND) designed to provide physiologic support of extremely premature infants. OBJECTIVES: We have previously shown that long-term, physiologic support of premature fetal lambs is possible with EXTEND, but in this study, we sought to demonstrate bioenergetic equipoise at the tissue level. METHODS: Four premature fetal lambs were delivered by hysterotomy at gestational ages (GA) of 105-107 days (term ∼145 days), cannulated via the umbilical vessels, and transitioned to support on EXTEND for 3-4 weeks. Five control fetuses were age-matched to the GA of experimental fetuses at the time of study end (128-134 days GA) and immediately sacrificed after hysterotomy. Mitochondria were isolated from the heart, liver, kidney, and skeletal muscle of fetuses at the time of sacrifice, and oxygen consumption rates (OCRs) were measured. RESULTS: There were no differences in basal mitochondrial OCR between EXTEND and control fetuses for heart, kidney, or skeletal muscle. For liver, the basal OCR was higher in EXTEND fetuses compared to controls. There were no differences in physiologic maximal OCR or reserve capacity for any tissue analyzed. CONCLUSIONS: Fetal lambs supported by EXTEND demonstrate physiologic mitochondrial function as evidenced by adequate basal and physiologic maximal cellular respiration as well as preserved reserve capacity.


Asunto(s)
Órganos Artificiales , Metabolismo Energético , Oxigenación por Membrana Extracorpórea , Mitocondrias/metabolismo , Nacimiento Prematuro/terapia , 8-Hidroxi-2'-Desoxicoguanosina/sangre , Animales , Animales Recién Nacidos , Bilirrubina/sangre , Biomarcadores/sangre , Respiración de la Célula , Oxigenación por Membrana Extracorpórea/instrumentación , Femenino , Monitoreo Fetal , Edad Gestacional , Consumo de Oxígeno , Oxigenadores de Membrana , Embarazo , Nacimiento Prematuro/metabolismo , Nacimiento Prematuro/fisiopatología , Oveja Doméstica , Factores de Tiempo
6.
Biochim Biophys Acta ; 1857(8): 1203-1212, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27048932

RESUMEN

The mouse fetal and adult hearts express two adenine nucleotide translocator (ANT) isoform genes. The predominant isoform is the heart-muscle-brain ANT-isoform gene 1 (Ant1) while the other is the systemic Ant2 gene. Genetic inactivation of the Ant1 gene does not impair fetal development but results in hypertrophic cardiomyopathy in postnatal mice. Using a knockin X-linked Ant2 allele in which exons 3 and 4 are flanked by loxP sites combined in males with a protamine 1 promoter driven Cre recombinase we created females heterozygous for a null Ant2 allele. Crossing the heterozygous females with the Ant2(fl), PrmCre(+) males resulted in male and female ANT2-null embryos. These fetuses proved to be embryonic lethal by day E14.5 in association with cardiac developmental failure, immature cardiomyocytes having swollen mitochondria, cardiomyocyte hyperproliferation, and cardiac failure due to hypertrabeculation/noncompaction. ANTs have two main functions, mitochondrial-cytosol ATP/ADP exchange and modulation of the mitochondrial permeability transition pore (mtPTP). Previous studies imply that ANT2 biases the mtPTP toward closed while ANT1 biases the mtPTP toward open. It has been reported that immature cardiomyocytes have a constitutively opened mtPTP, the closure of which signals the maturation of cardiomyocytes. Therefore, we hypothesize that the developmental toxicity of the Ant2 null mutation may be the result of biasing the cardiomyocyte mtPTP to remain open thus impairing cardiomyocyte maturation and resulting in cardiomyocyte hyperproliferation and failure of trabecular maturation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Asunto(s)
Translocador 2 del Nucleótido Adenina/deficiencia , Cardiopatías Congénitas/genética , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Adenina/metabolismo , Translocador 2 del Nucleótido Adenina/genética , Animales , Transporte Biológico , Proliferación Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Insuficiencia Cardíaca/embriología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Integrasas , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/patología , Dilatación Mitocondrial/genética , Miocitos Cardíacos/patología , Organogénesis , Fenotipo
7.
FASEB J ; 29(6): 2315-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25681462

RESUMEN

Conventional T (Tcon) cells and Foxp3(+) T-regulatory (Treg) cells are thought to have differing metabolic requirements, but little is known of mitochondrial functions within these cell populations in vivo. In murine studies, we found that activation of both Tcon and Treg cells led to myocyte enhancer factor 2 (Mef2)-induced expression of genes important to oxidative phosphorylation (OXPHOS). Inhibition of OXPHOS impaired both Tcon and Treg cell function compared to wild-type cells but disproportionally affected Treg cells. Deletion of Pgc1α or Sirt3, which are key regulators of OXPHOS, abrogated Treg-dependent suppressive function and impaired allograft survival. Mef2 is inhibited by histone/protein deacetylase-9 (Hdac9), and Hdac9 deletion increased Treg suppressive function. Hdac9(-/-) Treg showed increased expression of Pgc1α and Sirt3, and improved mitochondrial respiration, compared to wild-type Treg cells. Our data show that key OXPHOS regulators are required for optimal Treg function and Treg-dependent allograft acceptance. These findings provide a novel approach to increase Treg function and give insights into the fundamental mechanisms by which mitochondrial energy metabolism regulates immune cell functions in vivo.


Asunto(s)
Metabolismo Energético/inmunología , Factores de Transcripción Forkhead/inmunología , Supervivencia de Injerto/inmunología , Mitocondrias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Western Blotting , Metabolismo Energético/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Supervivencia de Injerto/genética , Histona Desacetilasas/genética , Histona Desacetilasas/inmunología , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/inmunología , Factores de Transcripción MEF2/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/inmunología , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sirtuina 3/genética , Sirtuina 3/inmunología , Sirtuina 3/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(19): 7391-6, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22517755

RESUMEN

The distinction between mild pathogenic mtDNA mutations and population polymorphisms can be ambiguous because both are homoplasmic, alter conserved functions, and correlate with disease. One possible explanation for this ambiguity is that the same variant may have different consequences in different contexts. The NADH dehydrogenase subunit 1 (ND1) nucleotide 3394 T > C (Y30H) variant is such a case. This variant has been associated with Leber hereditary optic neuropathy and it reduces complex I activity and cellular respiration between 7% and 28% on the Asian B4c and F1 haplogroup backgrounds. However, complex I activity between B4c and F1 mtDNAs, which harbor the common 3394T allele, can also differ by 30%. In Asia, the 3394C variant is most commonly associated with the M9 haplogroup, which is rare at low elevations but increases in frequency with elevation to an average of 25% of the Tibetan mtDNAs (odds ratio = 23.7). In high-altitude Tibetan and Indian populations, the 3394C variant occurs on five different macrohaplogroup M haplogroup backgrounds and is enriched on the M9 background in Tibet and the C4a4 background on the Indian Deccan Plateau (odds ratio = 21.9). When present on the M9 background, the 3394C variant is associated with a complex I activity that is equal to or higher than that of the 3394T variant on the B4c and F1 backgrounds. Hence, the 3394C variant can either be deleterious or beneficial depending on its haplogroup and environmental context. Thus, this mtDNA variant fulfills the criteria for a common variant that predisposes to a "complex" disease.


Asunto(s)
Altitud , ADN Mitocondrial/genética , NADH Deshidrogenasa/genética , Atrofia Óptica Hereditaria de Leber/genética , Polimorfismo Genético , Alelos , Sustitución de Aminoácidos , Pueblo Asiatico/genética , Línea Celular Tumoral , ADN Mitocondrial/química , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Haplotipos , Humanos , Datos de Secuencia Molecular , NADH Deshidrogenasa/metabolismo , Atrofia Óptica Hereditaria de Leber/etnología , Atrofia Óptica Hereditaria de Leber/metabolismo , Consumo de Oxígeno , Análisis de Secuencia de ADN , Tibet
9.
Front Immunol ; 14: 1064293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891303

RESUMEN

Background: Compared to healthy controls, severe COVID19 patients display increased levels of activated NLRP3-inflammasome (NLRP3-I) and interleukin (IL)-1ß. SARS-CoV-2 encodes viroporin proteins E and Orf3a(2-E+2-3a) with homologs to SARS-CoV-1, 1-E+1-3a, which elevate NLRP3-I activation; by an unknown mechanism. Thus, we investigated how 2-E+2-3a activates the NLRP3-I to better understand the pathophysiology of severe COVID-19. Methods: We generated a polycistronic expression-vector co-expressing 2-E+2-3a from a single transcript. To elucidate how 2-E+2-3a activates the NLRP3-I, we reconstituted the NLRP3-I in 293T cells and used THP1-derived macrophages to monitor the secretion of mature IL-1ß. Mitochondrial physiology was assessed using fluorescent microscopy and plate reader assays, and the release of mitochondrial DNA (mtDNA) was detected from cytosolic-enriched fractions using Real-Time PCR. Results: Expression of 2-E+2-3a in 293T cells increased cytosolic Ca++ and elevated mitochondrial Ca++, taken up through the MCUi11-sensitive mitochondrial calcium uniporter. Increased mitochondrial Ca++ stimulated NADH, mitochondrial reactive oxygen species (mROS) production and the release of mtDNA into the cytosol. Expression of 2-E+2-3a in NLRP3-I reconstituted 293T cells and THP1-derived macrophages displayed increased secretion of IL-1ß. Increasing mitochondrial antioxidant defenses via treatment with MnTBAP or genetic expression of mCAT abolished 2-E+2-3a elevation of mROS, cytosolic mtDNA levels, and secretion of NLRP3-activated-IL-1ß. The 2-E+2-3a-induced release of mtDNA and the secretion of NLRP3-activated-IL-1ß were absent in cells lacking mtDNA and blocked in cells treated with the mitochondrial-permeability-pore(mtPTP)-specific inhibitor NIM811. Conclusion: Our findings revealed that mROS activates the release of mitochondrial DNA via the NIM811-sensitive mitochondrial-permeability-pore(mtPTP), activating the inflammasome. Hence, interventions targeting mROS and the mtPTP may mitigate the severity of COVID-19 cytokine storms.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Viroporinas , SARS-CoV-2/genética , Poro de Transición de la Permeabilidad Mitocondrial , ADN Mitocondrial/metabolismo
10.
Sci Transl Med ; 15(708): eabq1533, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556555

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.


Asunto(s)
COVID-19 , Cricetinae , Humanos , Animales , Ratones , COVID-19/patología , SARS-CoV-2 , Roedores , Genes Mitocondriales , Pulmón/patología
11.
bioRxiv ; 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35233572

RESUMEN

Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.

12.
Hum Mol Genet ; 18(11): 2024-31, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19293339

RESUMEN

Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy are inherited muscle disorders caused by mutations of genes encoding the extracellular matrix protein collagen VI (ColVI). Mice lacking ColVI (Col6a1(-/-)) display a myopathic phenotype associated with ultrastructural alterations of mitochondria and sarcoplasmic reticulum, mitochondrial dysfunction with abnormal opening of the permeability transition pore (PTP) and increased apoptosis of muscle fibers. Treatment with cyclosporin (Cs) A, a drug that desensitizes the PTP by binding to cyclophilin (Cyp)-D, was shown to rescue myofiber alterations in Col6a1(-/-) mice and in UCMD patients, suggesting a correlation between PTP opening and pathogenesis of ColVI muscular dystrophies. Here, we show that inactivation of the gene encoding for Cyp-D rescues the disease phenotype of ColVI deficiency. In the absence of Cyp-D, Col6a1(-/-) mice show negligible myofiber degeneration, rescue from mitochondrial dysfunction and ultrastructural defects, and normalized incidence of apoptosis. These findings (i) demonstrate that lack of Cyp-D is equivalent to its inhibition with CsA at curing the mouse dystrophic phenotype; (ii) establish a cause-effect relationship between Cyp-D-dependent PTP regulation and pathogenesis of the ColVI muscular dystrophy and (iii) validate Cyp-D and the PTP as pharmacological targets for the therapy of human ColVI myopathies.


Asunto(s)
Apoptosis , Colágeno Tipo VI/genética , Ciclofilinas/genética , Silenciador del Gen , Mitocondrias/enzimología , Fibras Musculares Esqueléticas/citología , Enfermedades Musculares/fisiopatología , Animales , Células Cultivadas , Colágeno Tipo VI/metabolismo , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Enfermedades Musculares/enzimología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo
13.
Proc Natl Acad Sci U S A ; 105(13): 5225-9, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18362356

RESUMEN

Ullrich congenital muscular dystrophy and Bethlem myopathy are skeletal muscle diseases that are due to mutations in the genes encoding collagen VI, an extracellular matrix protein forming a microfibrillar network that is particularly prominent in the endomysium of skeletal muscle. Myoblasts from patients affected by Ullrich congenital muscular dystrophy display functional and ultrastructural mitochondrial alterations and increased apoptosis due to inappropriate opening of the permeability transition pore, a mitochondrial inner membrane channel. These alterations could be normalized by treatment with cyclosporin A, a widely used immunosuppressant that desensitizes the permeability transition pore independently of calcineurin inhibition. Here, we report the results of an open pilot trial with cyclosporin A in five patients with collagen VI myopathies. Before treatment, all patients displayed mitochondrial dysfunction and increased frequency of apoptosis, as determined in muscle biopsies. Both of these pathologic signs were largely normalized after 1 month of oral cyclosporin A administration, which also increased muscle regeneration. These findings demonstrate that collagen VI myopathies can be effectively treated with drugs acting on the pathogenic mechanism downstream of the genetic lesion, and they represent an important proof of principle for the potential therapy of genetic diseases.


Asunto(s)
Apoptosis/efectos de los fármacos , Colágeno Tipo VI/metabolismo , Ciclosporina/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Adulto , Animales , Biopsia , Niño , Colágeno Tipo VI/deficiencia , Colágeno Tipo VI/genética , Humanos , Ratones , Ratones Noqueados , Persona de Mediana Edad , Enfermedades Musculares/genética , Enfermedades Musculares/patología
14.
Sci Rep ; 10(1): 424, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949209

RESUMEN

Foxp3+ T-regulatory (Treg) cells are capable of suppressing immune responses. Lysine acetylation is a key mechanism of post-translational control of various transcription factors, and when acetylated, Foxp3 is stabilized and transcriptionally active. Therefore, understanding the roles of various histone/protein deacetylases (HDAC) are key to promoting Treg-based immunotherapy. Several of the 11 classical HDAC enzymes are necessary for optimal Treg function while others are dispensable. We investigated the effect of HDAC10 in murine Tregs. HDAC10 deletion had no adverse effect on the health of mice, which retained normal CD4+ and CD8+ T cell function. However, HDAC10-/- Treg exhibited increased suppressive function in vitro and in vivo. C57BL/6 Rag1-/- mice adoptively transferred with HDAC10-/- but not wild Treg, were protected from developing colitis. HDAC10-/- but not wild-type mice receiving fully MHC-mismatched cardiac transplants became tolerant and showed long-term allograft survival (>100 d). We conclude that targeting of HDAC10 may be of therapeutic value for inflammatory disorders including colitis and also for transplantation.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Eliminación de Gen , Linfocitos T Reguladores/citología , Animales , Colitis/genética , Colitis/inmunología , Células HEK293 , Trasplante de Corazón/efectos adversos , Humanos , Ratones , Tolerancia al Trasplante/genética
15.
Cell Rep ; 33(11): 108500, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326785

RESUMEN

Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression.


Asunto(s)
Ácido Láctico/metabolismo , NAD/metabolismo , Proliferación Celular , Humanos , Oxidación-Reducción
16.
Biochim Biophys Acta ; 1777(7-8): 893-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18435905

RESUMEN

We have studied the effects of rotenone in myoblasts from healthy donors and from patients with Ullrich congenital muscular dystrophy (UCMD), a severe muscle disease due to mutations in the genes encoding the extracellular matrix protein collagen VI. Addition of rotenone to normal myoblasts caused a very limited mitochondrial depolarization because the membrane potential was maintained by the F1FO synthase, as indicated by full depolarization following the subsequent addition of oligomycin. In UCMD myoblasts rotenone instead caused complete mitochondrial depolarization, which was followed by faster ATP depletion than in healthy myoblasts. Mitochondrial depolarization could be prevented by treatment with cyclosporin A and intracellular Ca(2+) chelators, while it was worsened by depleting Ca(2+) stores with thapsigargin. Thus, in UCMD myoblasts rotenone-induced depolarization is due to opening of the permeability transition pore rather than to inhibition of electron flux as such. These findings indicate that in UCMD myoblasts the threshold for pore opening is very close to the resting membrane potential, so that even a small depolarization causes permeability transition pore opening and precipitates ATP depletion.


Asunto(s)
Colágeno/genética , Mitocondrias Musculares/fisiología , Membranas Mitocondriales/fisiología , Distrofia Muscular de Cinturas/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Quelantes/farmacología , Modelos Animales de Enfermedad , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Humanos , Potenciales de la Membrana/fisiología , Ratones , Mitocondrias Musculares/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Distrofia Muscular de Cinturas/congénito , Distrofia Muscular de Cinturas/genética , Mioblastos/fisiología , Oligomicinas/farmacología , Permeabilidad , Valores de Referencia , Rotenona/farmacología
17.
Cell Metab ; 29(1): 78-90.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30174309

RESUMEN

Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.


Asunto(s)
Cardiomiopatías/genética , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Mutación
19.
Cell Metab ; 25(6): 1282-1293.e7, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416194

RESUMEN

Immune cells function in diverse metabolic environments. Tissues with low glucose and high lactate concentrations, such as the intestinal tract or ischemic tissues, frequently require immune responses to be more pro-tolerant, avoiding unwanted reactions against self-antigens or commensal bacteria. T-regulatory cells (Tregs) maintain peripheral tolerance, but how Tregs function in low-glucose, lactate-rich environments is unknown. We report that the Treg transcription factor Foxp3 reprograms T cell metabolism by suppressing Myc and glycolysis, enhancing oxidative phosphorylation, and increasing nicotinamide adenine dinucleotide oxidation. These adaptations allow Tregs a metabolic advantage in low-glucose, lactate-rich environments; they resist lactate-mediated suppression of T cell function and proliferation. This metabolic phenotype may explain how Tregs promote peripheral immune tolerance during tissue injury but also how cancer cells evade immune destruction in the tumor microenvironment. Understanding Treg metabolism may therefore lead to novel approaches for selective immune modulation in cancer and autoimmune diseases.


Asunto(s)
Microambiente Celular/inmunología , Reprogramación Celular/inmunología , Factores de Transcripción Forkhead/inmunología , Glucosa/inmunología , Ácido Láctico/inmunología , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Microambiente Celular/genética , Reprogramación Celular/genética , Factores de Transcripción Forkhead/genética , Glucosa/genética , Glucólisis/genética , Glucólisis/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/inmunología
20.
Integr Biol (Camb) ; 8(11): 1170-1182, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27734042

RESUMEN

An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.


Asunto(s)
Citoesqueleto/fisiología , Fibroblastos/fisiología , Mitocondrias/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Fibroblastos/ultraestructura , Humanos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Consumo de Oxígeno/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA