Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
N Engl J Med ; 385(21): 1961-1973, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34788507

RESUMEN

BACKGROUND: The goal of gene therapy for patients with hemophilia A is to safely impart long-term stable factor VIII expression that predictably ameliorates bleeding with the use of the lowest possible vector dose. METHODS: In this phase 1-2 trial, we infused an investigational adeno-associated viral (AAV) vector (SPK-8011) for hepatocyte expression of factor VIII in 18 men with hemophilia A. Four dose cohorts were enrolled; the lowest-dose cohort received a dose of 5 × 1011 vector genomes (vg) per kilogram of body weight, and the highest-dose cohort received 2 × 1012 vg per kilogram. Some participants received glucocorticoids within 52 weeks after vector administration either to prevent or to treat a presumed AAV capsid immune response. Trial objectives included evaluation of the safety and preliminary efficacy of SPK-8011 and of the expression and durability of factor VIII. RESULTS: The median safety observation period was 36.6 months (range, 5.5 to 50.3). A total of 33 treatment-related adverse events occurred in 8 participants; 17 events were vector-related, including 1 serious adverse event, and 16 were glucocorticoid-related. Two participants lost all factor VIII expression because of an anti-AAV capsid cellular immune response that was not sensitive to immune suppression. In the remaining 16 participants, factor VIII expression was maintained; 12 of these participants were followed for more than 2 years, and a one-stage factor VIII assay showed no apparent decrease in factor VIII activity over time (mean [±SD] factor VIII activity, 12.9±6.9% of the normal value at 26 to 52 weeks when the participants were not receiving glucocorticoids vs. 12.0±7.1% of the normal value at >52 weeks after vector administration; 95% confidence interval [CI], -2.4 to 0.6 for the difference between matched pairs). The participants had a 91.5% reduction (95% CI, 88.8 to 94.1) in the annualized bleeding rate (median rate, 8.5 events per year [range, 0 to 43.0] before vector administration vs. 0.3 events per year [range, 0 to 6.5] after vector administration). CONCLUSIONS: Sustained factor VIII expression in 16 of 18 participants who received SPK-8011 permitted discontinuation of prophylaxis and a reduction in bleeding episodes. No major safety concerns were reported. (Funded by Spark Therapeutics and the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT03003533 and NCT03432520.).


Asunto(s)
Dependovirus , Factor VIII/genética , Factor VIII/metabolismo , Terapia Genética , Vectores Genéticos , Hemofilia A/sangre , Adolescente , Adulto , Estudios de Seguimiento , Genotipo , Glucocorticoides/efectos adversos , Glucocorticoides/uso terapéutico , Hemofilia A/genética , Hemofilia A/prevención & control , Hepatocitos/metabolismo , Humanos , Terapia de Inmunosupresión , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Annu Rev Med ; 70: 273-288, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30477394

RESUMEN

Gene therapies are gaining momentum as promising early successes in clinical studies accumulate and examples of regulatory approval for licensing increase. Investigators are advancing with cautious optimism that effective, durable, and safe therapies will provide benefit to patients-not only those with single-gene disorders but those with complex acquired diseases as well. While the strategies being translated from the lab to the clinic are numerous, this review focuses on the clinical research that has forged the gene therapy field as it currently stands.


Asunto(s)
Adenoviridae/genética , Terapia Genética/métodos , Terapia Genética/tendencias , Vectores Genéticos/uso terapéutico , Lentivirus/genética , Animales , Femenino , Predicción , Edición Génica/métodos , Humanos , Masculino , National Institutes of Health (U.S.) , Medición de Riesgo , Investigación Biomédica Traslacional , Resultado del Tratamiento , Estados Unidos
3.
Mol Ther ; 28(9): 2073-2082, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32559433

RESUMEN

Adeno-associated virus (AAV) vectors are a leading platform for gene-based therapies for both monogenic and complex acquired disorders. The success of AAV gene transfer highlights the need to answer outstanding clinical questions of safety, durability, and the nature of the human immune response to AAV vectors. Here, we present longitudinal follow-up data of subjects who participated in the first trial of a systemically delivered AAV vector. Adult males (n = 7) with severe hemophilia B received an AAV2 vector at doses ranging from 8 × 1010 to 2 × 1012 vg/kg to target hepatocyte-specific expression of coagulation factor IX; a subset (n = 4) was followed for 12-15 years post-vector administration. No major safety concerns were observed. There was no evidence of sustained hepatic toxicity or development of hepatocellular carcinoma as assessed by liver transaminase values, serum α-fetoprotein, and liver ultrasound. Subjects demonstrated persistent, increased AAV neutralizing antibodies (NAbs) to the infused AAV serotype 2 (AAV2) as well as all other AAV serotypes tested (AAV5 and AAV8) for the duration of follow-up. These data represent the longest available longitudinal follow-up data of subjects who received intravascular AAV and support the preliminary safety of intravascular AAV administration at the doses tested in adults. Data demonstrate, for the first time, the persistence of high-titer, multi-serotype cross-reactive AAV NAbs for up to 15 years post- AAV vector administration. Our observations are broadly applicable to the development of AAV-mediated gene therapy.


Asunto(s)
Dependovirus/genética , Factor IX/metabolismo , Técnicas de Transferencia de Gen/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Hemofilia B/terapia , Hepatocitos/metabolismo , Infusiones Intraarteriales/métodos , Transducción de Señal/efectos de los fármacos , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cápside/inmunología , Reacciones Cruzadas , Dependovirus/inmunología , Estudios de Seguimiento , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Humanos , Infusiones Intraarteriales/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
4.
N Engl J Med ; 377(23): 2215-2227, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29211678

RESUMEN

BACKGROUND: The prevention of bleeding with adequately sustained levels of clotting factor, after a single therapeutic intervention and without the need for further medical intervention, represents an important goal in the treatment of hemophilia. METHODS: We infused a single-stranded adeno-associated viral (AAV) vector consisting of a bioengineered capsid, liver-specific promoter and factor IX Padua (factor IX-R338L) transgene at a dose of 5×1011 vector genomes per kilogram of body weight in 10 men with hemophilia B who had factor IX coagulant activity of 2% or less of the normal value. Laboratory values, bleeding frequency, and consumption of factor IX concentrate were prospectively evaluated after vector infusion and were compared with baseline values. RESULTS: No serious adverse events occurred during or after vector infusion. Vector-derived factor IX coagulant activity was sustained in all the participants, with a mean (±SD) steady-state factor IX coagulant activity of 33.7±18.5% (range, 14 to 81). On cumulative follow-up of 492 weeks among all the participants (range of follow-up in individual participants, 28 to 78 weeks), the annualized bleeding rate was significantly reduced (mean rate, 11.1 events per year [range, 0 to 48] before vector administration vs. 0.4 events per year [range, 0 to 4] after administration; P=0.02), as was factor use (mean dose, 2908 IU per kilogram [range, 0 to 8090] before vector administration vs. 49.3 IU per kilogram [range, 0 to 376] after administration; P=0.004). A total of 8 of 10 participants did not use factor, and 9 of 10 did not have bleeds after vector administration. An asymptomatic increase in liver-enzyme levels developed in 2 participants and resolved with short-term prednisone treatment. One participant, who had substantial, advanced arthropathy at baseline, administered factor for bleeding but overall used 91% less factor than before vector infusion. CONCLUSIONS: We found sustained therapeutic expression of factor IX coagulant activity after gene transfer in 10 participants with hemophilia who received the same vector dose. Transgene-derived factor IX coagulant activity enabled the termination of baseline prophylaxis and the near elimination of bleeding and factor use. (Funded by Spark Therapeutics and Pfizer; ClinicalTrials.gov number, NCT02484092 .).


Asunto(s)
Factor IX/genética , Terapia Genética/métodos , Vectores Genéticos , Hemofilia B/terapia , Transgenes , Adolescente , Adulto , Dependovirus/inmunología , Factor IX/metabolismo , Factor IX/uso terapéutico , Vectores Genéticos/administración & dosificación , Hemofilia B/genética , Hemofilia B/metabolismo , Hemorragia/prevención & control , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Hum Mol Genet ; 25(R1): R36-41, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26614390

RESUMEN

Gene transfer studies for the treatment of hemophilia began more than two decades ago. A large body of pre-clinical work evaluated a variety of vectors and target tissues, but by the start of the new millennium it became evident that adeno-associated viral (AAV)-mediated gene transfer to the liver held great promise as a therapeutic tool. The transition to the clinical arena uncovered a number of unforeseen challenges, mainly in the form of a human-specific immune response against the vector that poses a significant limitation in the application of this technology. While the full nature of this response has not been elucidated, long-term expression of therapeutic levels of factor IX is already a reality for a small number of patients. Extending this success to a greater number of hemophilia B patients remains a major goal of the field, as well as translating this strategy to clinical therapy for hemophilia A. This review summarizes the progress of AAV-mediated gene therapy for the hemophilias, along with its upcoming prospects and challenges.


Asunto(s)
Dependovirus/genética , Vectores Genéticos , Hemofilia A/terapia , Hemofilia B/terapia , Terapia Genética , Humanos
6.
Blood ; 126(15): 1777-84, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26297739

RESUMEN

Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases.


Asunto(s)
Albúminas/genética , Terapia de Reemplazo Enzimático , Terapia Genética , Genoma , Hígado/metabolismo , Transgenes/fisiología , Albúminas/metabolismo , Animales , Dependovirus/genética , Endonucleasas , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Factor IX/genética , Factor VIII/genética , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Vectores Genéticos/administración & dosificación , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lisosomas/enzimología , Ratones , Ratones Endogámicos C57BL , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/terapia , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/terapia , Regiones Promotoras Genéticas/genética , Edición de ARN , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Dedos de Zinc
7.
Nature ; 475(7355): 217-21, 2011 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-21706032

RESUMEN

Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.


Asunto(s)
Reparación del ADN/genética , Modelos Animales de Enfermedad , Marcación de Gen/métodos , Terapia Genética/métodos , Genoma/genética , Hemofilia B/genética , Hemostasis , Animales , Secuencia de Bases , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Exones/genética , Factor IX/análisis , Factor IX/genética , Vectores Genéticos/genética , Células HEK293 , Hemofilia B/fisiopatología , Humanos , Intrones/genética , Hígado/metabolismo , Regeneración Hepática , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Fenotipo , Homología de Secuencia , Dedos de Zinc
8.
Blood ; 122(19): 3283-7, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24085764

RESUMEN

Monogenic diseases, including hemophilia, represent ideal targets for genome-editing approaches aimed at correcting a defective gene. Here we report that systemic adeno-associated virus (AAV) vector delivery of zinc finger nucleases (ZFNs) and corrective donor template to the predominantly quiescent livers of adult mice enables production of high levels of human factor IX in a murine model of hemophilia B. Further, we show that off-target cleavage can be substantially reduced while maintaining robust editing by using obligate heterodimeric ZFNs engineered to minimize unwanted cleavage attributable to homodimerization of the ZFNs. These results broaden the therapeutic potential of AAV/ZFN-mediated genome editing in the liver and could expand this strategy to other nonreplicating cell types.


Asunto(s)
Endonucleasas/genética , Factor IX/biosíntesis , Terapia Genética/métodos , Vectores Genéticos , Genoma , Hemofilia B/terapia , Dedos de Zinc/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Endonucleasas/metabolismo , Factor IX/genética , Factor IX/metabolismo , Hemofilia B/genética , Hemofilia B/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Multimerización de Proteína
9.
Blood Adv ; 8(7): 1796-1803, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592711

RESUMEN

ABSTRACT: The US Food and Drug Administration (FDA)'s authorization of etranacogene dezaparvovec (Hemgenix) is a significant milestone, constituting not only the first FDA approval of a gene therapy for hemophilia but also the first approval of a liver-targeted adeno-associated virus vector gene therapy. This review summarizes the nonclinical studies and clinical development that supported regulatory clearance. Similar to other gene therapies for single gene disorders, both the short-term safety and the phenotypic improvement were unequivocal, justifying the modest-sized safety and efficacy database, which included 57 participants across the phase 2b (3 participants) and phase 3 (54 participants) studies. The most common adverse reactions included liver enzyme elevation, headache, flu-like symptoms, infusion-related reactions, creatine kinase elevation, malaise, and fatigue; these were mostly transient. One participant had hepatocellular carcinoma on a study-mandated liver ultrasound conducted 1 year after vector infusion; molecular analysis of the resected tumor showed no evidence of vector-related insertional mutagenesis as the etiology. A remarkable 96% of participants in the phase 3 trial were able to stop factor IX (FIX) prophylaxis, with the study demonstrating noninferiority to FIX prophylaxis in terms of the primary end point, annualized bleeding rate. Key secondary end points such as the annualized infusion rate, which declined by 97%, and the plasma FIX activity level at 18 months after infusion, with least squares mean increase of 34.3 percentage points compared with baseline, were both clinically and statistically significant. The FDA's landmark approval of Hemgenix as a pioneering treatment for hemophilia stands on the shoulders of >20 years of gene therapy clinical research and heralds a promising future for genomic medicines.


Asunto(s)
Hemofilia A , Hemofilia B , Estados Unidos , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Factor IX/genética , Factor IX/uso terapéutico , Bases de Datos Factuales , Fatiga
10.
Mol Ther ; 20(2): 254-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22008915

RESUMEN

Mucopolysaccharidosis type IIIA (MPSIIIA) is an inherited lysosomal storage disease caused by deficiency of sulfamidase, resulting in accumulation of the glycosaminoglycan (GAG) heparan sulfate. It is characterized by severe progressive neurodegeneration, together with somatic alterations, which lead to death during adolescence. Here, we tested the ability of adeno-associated virus (AAV) vector-mediated genetic modification of either skeletal muscle or liver to revert the already established disease phenotype of 2-month-old MPSIIIA males and females. Intramuscular administration of AAV-Sulfamidase failed to achieve significant therapeutic benefit in either gender. In contrast, AAV8-mediated liver-directed gene transfer achieved high and sustained levels of circulating active sulfamidase, which reached normal levels in females and was fourfold higher in males, and completely corrected lysosomal GAG accumulation in most somatic tissues. Remarkably, a 50% reduction of GAG accumulation was achieved throughout the entire brain of males, which correlated with a partial improvement of the pathology of cerebellum and cortex. Liver-directed gene transfer expanded the lifespan of MPSIIIA males, underscoring the importance of reaching supraphysiological plasma levels of enzyme for maximal therapeutic benefit. These results show how liver-directed gene transfer can reverse somatic and ameliorate neurological pathology in MPSIIIA.


Asunto(s)
Sistema Nervioso Central/patología , Terapia Genética , Hidrolasas/genética , Hígado/metabolismo , Mucopolisacaridosis III/terapia , Animales , Cerebelo/ultraestructura , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Orden Génico , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/farmacocinética , Hidrolasas/metabolismo , Inyecciones Intramusculares , Inyecciones Intravenosas , Hígado/ultraestructura , Lisosomas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/mortalidad , Músculo Esquelético/metabolismo , Análisis de Supervivencia , Transducción Genética , Corteza Visual/patología , Corteza Visual/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA