Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202631

RESUMEN

Carbon nanodots (CNDs) are an emerging class of nanomaterials and have generated much interest in the field of biomedicine by way of unique properties, such as superior biocompatibility, stability, excellent photoluminescence, simple green synthesis, and easy surface modification. CNDs have been featured in a host of applications, including bioimaging, biosensing, and therapy. In this review, we summarize the latest research progress of CNDs and discuss key advances in our comprehension of CNDs and their potential as biomedical tools. We highlighted the recent developments in the understanding of the functional tailoring of CNDs by modifying dopants and surface molecules, which have yielded a deeper understanding of their antioxidant behavior and mechanisms of action. The increasing amount of in vitro research regarding CNDs has also spawned interest in in vivo practices. Chief among them, we discuss the emergence of research analyzing CNDs as useful therapeutic agents in various disease states. Each subject is debated with reflection on future studies that may further our grasp of CNDs.


Asunto(s)
Carbono/química , Nanoestructuras/química , Nanomedicina Teranóstica , Antioxidantes/química , Antioxidantes/farmacología , Biotecnología , Fenómenos Químicos , Técnicas de Química Sintética , Humanos , Estructura Molecular , Estrés Oxidativo , Procesos Fotoquímicos , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Nanomedicina Teranóstica/métodos , Nanomedicina Teranóstica/tendencias
2.
Antioxidants (Basel) ; 13(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38397822

RESUMEN

Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have yet to be explored. Here, we report that the uptake of CNDs by EA.hy926 endothelial cells is both time and dose dependent. The concentration of CNDs used in this experiment was found to not affect cell viability. TNF-α is a known biomarker of vascular inflammation. Cells treated with CNDs for 24 h significantly inhibited TNF-α (0.5 ng/mL)-induced expression of intracellular adhesion molecule 1 (ICAM-1) and interleukin 8 (IL-8). ICAM-1 and IL-8 are two key molecules responsible for the activation and the firm adhesion of monocytes to activated endothelial cells for the initiation of atherosclerosis. ROS, such as hydrogen peroxide, play an important role in TNF-α-induced inflammation. Interestingly, we found that CNDs effectively scavenged H2O2 in a dose-dependent manner. CNDs treatment also increased the activity of the antioxidant enzyme NQO1 in EA.hy926 endothelial cells indicating the antioxidant properties of CNDs. These results suggest that the anti-inflammatory effects of CNDs may be due to the direct H2O2 scavenging properties of CNDs and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells. In conclusion, CND can inhibit TNF-α-induced endothelial inflammation, possibly due to its direct scavenging of H2O2 and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA