RESUMEN
BACKGROUND: The Early Pediatric Initiation Canada Child Cure Cohort (EPIC4) study is a prospective, multicenter, Canadian cohort study investigating human immunodeficiency virus-1 (HIV-1) reservoirs, chronic inflammation, and immune responses in children with perinatally acquired HIV-1 infection. The focus of this report is HIV-1 reservoirs and correlates in the peripheral blood of children who achieved sustained virologic suppression (SVS) for ≥5 years. METHODS: HIV-1 reservoirs were determined by measuring HIV-1 DNA in peripheral blood mononuclear cells and inducible cell-free HIV-1 RNA in CD4+ T-cells by a prostratin analogue stimulation assay. HIV serology was quantified by signal-to-cutoff ratio (S/CO). RESULTS: Of 228 enrolled participants, 69 achieved SVS for ≥5 years. HIV-1 DNA, inducible cell-free HIV-1 RNA, and S/COs correlated directly with the age of effective combination antiretroviral therapy (cART) initiation (P < .001, P = .036, and P < .001, respectively) and age when SVS was achieved (P = .002, P = .038, and P < .001, respectively) and inversely with the proportion of life spent on effective cART (P < .001, P = .01, and P < .001, respectively) and proportion of life spent with SVS (P < .001, P = .079, and P < .001, respectively). Inducible cell-free HIV-1 RNA correlated with HIV-1 DNA, most particularly in children with SVS, without virologic blips, that was achieved with the first cART regimen initiated prior to 6 months of age (rho = 0.74; P = .037) or later (rho = 0.87; P < .001). S/COs correlated with HIV-1 DNA (P = .003), but less so with inducible cell-free HIV-1 RNA (P = .09). CONCLUSIONS: The prostratin analogue stimulation assay, with its lower blood volume requirement, could be a valuable method for evaluating inducible HIV-1 reservoirs in children. Standard commercial HIV serology may be a practical initial indirect measure of reservoir size in the peripheral blood of children with perinatally acquired HIV-1 infection.
Asunto(s)
Infecciones por VIH , VIH-1 , Canadá , Niño , Estudios de Cohortes , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Humanos , Leucocitos Mononucleares , Estudios Prospectivos , ARN , Carga ViralRESUMEN
Tumour necrosis factor (TNF)-α activation of mesenchymal stromal cells (MSC) enhances their tumour-suppressive properties and tumour-homing ability. The molecular actors involved are unknown. We found that TNF induced MSC migration and tubulogenesis which correlated with a dose-dependent increase in Cavin-1 and Cavin-3 transcript levels. TNF triggered cyclooxygenase (COX)-2 expression, whereas specific siRNA-mediated gene silencing of Cavin-2 resulted in an amplified COX-2 expression, tubulogenesis, and migratory response partially due to a rapid and sustained increase in NF-κB phosphorylation status. Our results highlight a suppressive role for the caveolar component Cavin-2 in the angiogenic and inflammatory regulation of TNF-activated MSC.
RESUMEN
Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells.