Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889144

RESUMEN

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Asunto(s)
Citoplasma , Schizosaccharomyces , Esporas Fúngicas , Trehalosa , Esporas Fúngicas/metabolismo , Esporas Fúngicas/fisiología , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología , Citoplasma/metabolismo , Trehalosa/metabolismo , Glucosa/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109538

RESUMEN

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Asunto(s)
Oryzias , Animales , Oryzias/genética , Estaciones del Año , Ritmo Circadiano/fisiología , Gónadas , Fotoperiodo
3.
Glycobiology ; 34(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38253038

RESUMEN

O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 µg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.


Asunto(s)
Placenta , Proteínas , Humanos , Femenino , Embarazo , Placenta/metabolismo , Proteínas/metabolismo , Fosforilación , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional
4.
Yeast ; 41(5): 349-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583078

RESUMEN

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Optogenética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transducción de Señal , Schizosaccharomyces/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , AMP Cíclico/metabolismo , Técnicas Biosensibles , Imagen Óptica/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Factores de Transcripción
5.
NPJ Syst Biol Appl ; 10(1): 70, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951549

RESUMEN

Bow-tie architecture is a layered network structure that has a narrow middle layer with multiple inputs and outputs. Such structures are widely seen in the molecular networks in cells, suggesting that a universal evolutionary mechanism underlies the emergence of bow-tie architecture. The previous theoretical studies have implemented evolutionary simulations of the feedforward network to satisfy a given input-output goal and proposed that the bow-tie architecture emerges when the ideal input-output relation is given as a rank-deficient matrix with mutations in network link intensities in a multiplicative manner. Here, we report that the bow-tie network inevitably appears when the link intensities representing molecular interactions are small at the initial condition of the evolutionary simulation, regardless of the rank of the goal matrix. Our dynamical system analysis clarifies the mechanisms underlying the emergence of the bow-tie structure. Further, we demonstrate that the increase in the input-output matrix reduces the width of the middle layer, resulting in the emergence of bow-tie architecture, even when evolution starts from large link intensities. Our data suggest that bow-tie architecture emerges as a side effect of evolution rather than as a result of evolutionary adaptation.


Asunto(s)
Transducción de Señal , Transducción de Señal/fisiología , Transducción de Señal/genética , Simulación por Computador , Evolución Biológica , Modelos Biológicos , Algoritmos , Evolución Molecular , Biología de Sistemas/métodos , Mutación/genética
6.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293146

RESUMEN

Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function-dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.

7.
Dev Cell ; 59(4): 545-557.e4, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38228139

RESUMEN

Cyclin-dependent kinase (CDK) determines the temporal ordering of the cell cycle phases. However, despite significant progress in studying regulators of CDK and phosphorylation patterns of CDK substrates at the population level, it remains elusive how CDK regulators coordinately affect CDK activity at the single-cell level and how CDK controls the temporal order of cell cycle events. Here, we elucidate the dynamics of CDK activity in fission yeast and mammalian cells by developing a CDK activity biosensor, Eevee-spCDK. We find that although CDK activity does not necessarily correlate with cyclin levels, it converges to the same level around mitotic onset in several mutant backgrounds, including pom1Δ cells and wee1 or cdc25 overexpressing cells. These data provide direct evidence that cells enter the M phase when CDK activity reaches a high threshold, consistent with the quantitative model of cell cycle progression in fission yeast.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animales , Fosforilación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Mitosis , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mamíferos/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Sports Biomech ; : 1-12, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742268

RESUMEN

This study aims to identify the relationship between jump height and the kinetic and kinematic parameters of the hip, knee, and ankle joints during countermovement jump (CMJ) in elite male athletes. Sixty-six elite male athletes from various sports (strength and power, winter downhill, combat, ball game, and aquatic) performed maximal effort CMJs with hands and arms crossed against their chests on force platforms. Jumping motion in the sagittal plane was recorded using video analysis and the peak torque, power, and angular velocity of the right hip, knee, and ankle joints were calculated during the propulsive phase. Correlations between the CMJ height and kinetic and kinematic parameters were investigated using Pearson's product-moment coefficient (r) and Spearman's rank correlation coefficient (ρ). CMJ height was highly correlated with peak hip power (ρ = 0.686, p < 0.001) and peak knee angular velocity (r = 0.517, p < 0.001), and moderately correlated with peak hip angular velocity (r = 0.438, p < 0.001) and peak hip torque (r = 0.398, p = 0.001). These results indicate that notable hip torque and power can contribute to increased angular velocity in both the knee and hip joints, ultimately increasing the CMJ height in elite male athletes.

9.
Sci Rep ; 14(1): 15749, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977767

RESUMEN

Although bone dehiscence may occur during orthodontic tooth movement into the narrow alveolar ridge, a non-invasive prevention method is yet to be fully established. We show for the first time prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice. In this study, we established a bone dehiscence mouse model by applying force application and used the granular type of scaffold materials encapsulated with bone morphogenetic protein (BMP)-2 and OP3-4, the receptor activator of NF-κB ligand (RANKL)-binding peptide, for the prophylactic injection to the alveolar bone. In vivo micro-computed tomography revealed bone dehiscence with decreased buccal alveolar bone thickness and height after force application, whereas no bone dehiscence was observed with the prophylactic injection after force application, and alveolar bone thickness and height were kept at similar levels as those in the control group. Bone histomorphometry analyses revealed that both bone formation and resorption parameters were significantly higher in the injection with force application group than in the force application without the prophylactic injection group. These findings suggest that the prophylactic local delivery of bone anabolic reagents can prevent bone dehiscence with increased bone remodelling activity.


Asunto(s)
Anabolizantes , Proteína Morfogenética Ósea 2 , Técnicas de Movimiento Dental , Microtomografía por Rayos X , Animales , Ratones , Técnicas de Movimiento Dental/efectos adversos , Anabolizantes/farmacología , Anabolizantes/administración & dosificación , Masculino , Osteogénesis/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Ligando RANK/metabolismo , Proceso Alveolar/efectos de los fármacos , Proceso Alveolar/diagnóstico por imagen , Proceso Alveolar/patología , Modelos Animales de Enfermedad
10.
Nat Commun ; 15(1): 6717, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112465

RESUMEN

Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.


Asunto(s)
Condensados Biomoleculares , Luz , Proteínas de Unión a Maltosa , Optogenética , Proteína FUS de Unión a ARN , Solubilidad , Proteínas de Unión a Maltosa/metabolismo , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Optogenética/métodos , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/química , Células HeLa
11.
RSC Chem Biol ; 5(6): 544-555, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846081

RESUMEN

Fluorescent reporters that visualize phosphatidylinositol 4-phosphate (PI4P) in living cells are indispensable to elucidate the roles of this fundamental lipid in cell physiology. However, currently available PI4P reporters have limitations, such as Golgi-biased localization and low detection sensitivity. Here, we present a series of fluorescent PI4P reporters based on the pleckstrin homology (PH) domain of oxysterol-binding protein-related protein 9 (ORP9). We show that the green fluorescent protein AcGFP1-tagged ORP9-PH domain can be used as a fluorescent PI4P reporter to detect cellular PI4P across its wide distribution at multiple cellular locations, including the plasma membrane (PM), Golgi, endosomes, and lysosomes with high specificity and contrast. We also developed blue, red, and near-infrared fluorescent PI4P reporters suitable for multicolor fluorescence imaging experiments. Finally, we demonstrate the utility of the ORP9-PH domain-based reporter to visualize dynamic changes in the PI4P distribution and level in living cells upon synthetic ER-PM membrane contact manipulation and GPCR stimulation. This work offers a new set of genetically encoded fluorescent PI4P reporters that are practically useful for the study of PI4P biology.

12.
J Toxicol Sci ; 49(5): 241-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692911

RESUMEN

Methylmercury is an environmental polluting organometallic compound that exhibits neurotoxicity, as observed in Minamata disease patients. Methylmercury damages peripheral nerves in Minamata patients, causing more damage to sensory nerves than motor nerves. Peripheral nerves are composed of three cell types: dorsal root ganglion (DRG) cells, anterior horn cells (AHCs), and Schwann cells. In this study, we compared cultured these three cell types derived from the rat for susceptibility to methylmercury cytotoxicity, intracellular accumulation of mercury, expression of L-type amino acid transporter 1 (LAT1), which transports methylmercury into cells, and expression of multidrug resistance-associated protein 2 (MRP2), which transports methylmercury-glutathione conjugates into the extracellular space. Of the cells examined, we found that DRG cells were the most susceptible to methylmercury with markedly higher intracellular accumulation of mercury. The constitutive level of LAT1 was higher and that of MRP2 lower in DRG cells compared with those in AHC and Schwann cells. Additionally, decreased cell viability caused by methylmercury was significantly reduced by either the LAT1 inhibitor, JPH203, or siRNA-mediated knockdown of LAT1. On the other hand, an MRP2 inhibitor, MK571, significantly intensified the decrease in the cell viability caused by methylmercury. Our results provide a cellular basis for sensory neve predominant injury in the peripheral nerves of Minamata disease patients.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Supervivencia Celular , Ganglios Espinales , Compuestos de Metilmercurio , Células de Schwann , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Nervios Periféricos/metabolismo , Nervios Periféricos/efectos de los fármacos , Masculino , Ratas , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167320, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38936515

RESUMEN

Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.


Asunto(s)
Resorción Ósea , FN-kappa B , Ovariectomía , Transducción de Señal , Aumento de Peso , Animales , Ovariectomía/efectos adversos , Femenino , Ratones , FN-kappa B/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Humanos , Densidad Ósea , Ratones Endogámicos C57BL , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética
14.
Materials (Basel) ; 17(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38399131

RESUMEN

BACKGROUND: Bone morphogenetic protein-2 (bmp-2) has a high potential to induce bone tissue formation in skeletal muscles. We developed a bone induction system in skeletal muscles using the bmp-2 gene through in vivo electroporation. Natural bone tissues with skeletal muscles can be considered potential candidates for biomaterials. However, our previous system using plate-type electrodes did not achieve a 100% success rate in inducing bone tissues in skeletal muscles. In this study, we aimed to enhance the efficiency of bone tissue formation in skeletal muscles by using a non-viral bmp-2 gene expression plasmid vector (pCAGGS-bmp-2) and needle-type electrodes. METHODS: We injected the bmp-2 gene with pCAGGS-bmp-2 into the skeletal muscles of rats' legs and immediately placed needle-type electrodes there. Skeletal tissues were then observed on the 21st day after gene transfer using soft X-ray and histological analyses. RESULTS: The use of needle-type electrodes resulted in a 100% success rate in inducing bone tissues in skeletal muscles. In contrast, the plate-type electrodes only exhibited a 33% success rate. Thus, needle-type electrodes can be more efficient and reliable for transferring the bmp-2 gene to skeletal muscles, making them potential biomaterials for repairing bone defects.

15.
J Perioper Pract ; : 17504589241232503, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38590001

RESUMEN

BACKGROUND: Postoperative temperature dysregulation affects the length of hospital stay and prognosis. This study evaluated the factors that influence the occurrence of fever in patients after aortic valve replacement surgery. METHODS: Eighty-seven consecutive patients who underwent aortic valve replacement surgery were included. Patients' age, sex and body mass index; presence of diabetes mellitus; operation time; blood loss; blood transfusion volume; preoperative and postoperative laboratory findings; presence or absence of oral function management; and fever >38°C were retrospectively analysed through univariate and multiple logistic regression analyses. RESULTS: Among the variables, only diabetes mellitus status was significantly associated with fever ⩾38°C. Postoperatively, patients with diabetes mellitus were significantly less likely to develop fever above 38°C and a fever rising to 38°C. CONCLUSIONS: This study shows that the presence of comorbid diabetes mellitus decreases the frequency of developing fever >38°C after aortic valve replacement surgery.

16.
Juntendo Iji Zasshi ; 68(4): 387-392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39021421

RESUMEN

Kinetic vision acuity (KVA) is an index developed in Japan that refers to the capacity to recognize a moving object that moves back and forth against the observer. This review outlines the history of KVA and studies on KVA conducted at the Faculty of Health and Sports Science of Juntendo University, i.e. characteristics of KVA in athletes, factors associated with KVA, sports and age-dependent decline of KVA, and effects of docosahexaenoic acid (DHA) and astaxanthin on KVA. KVA was defined in the early 1960s, and the measurement device was invented in 1968. Studies at the Faculty of Health and Sports Science began in the 1990s. In track-and-field athletics and skeleton, a winter downhill event, higher-ranked athletes had higher KVA than lower-ranked athletes. Although KVA cannot be predicted from static visual acuity or reaction time, a significant correlation was found between KVA and the peak latency of visual-evoked potentials. KVA could not be improved by training and did not change between age of 8 and 17 years. In contrast, habitual practice in kendo may inhibit the age-dependent decline in KVA. DHA may also improve KVA in subjects with low KVA; however, astaxanthin did not improve KVA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA