RESUMEN
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein-protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic-related genes in males and increased expression of innate immunity-related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex-dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.
RESUMEN
RATIONALE: Clozapine N-oxide (CNO) has been developed as a ligand to selectively activate designer receptors exclusively activated by designer drugs (DREADDs). However, previous studies have revealed that peripherally injected CNO is reverse-metabolized into clozapine, which, in addition to activating DREADDs, acts as an antagonist at various neurotransmitter receptors, suggesting potential off-target effects of CNO on animal physiology and behaviors. Recently, second-generation DREADD agonists compound 21 (C21) and JHU37160 (J60) have been developed, but their off-target effects are not fully understood. OBJECTIVES: The present studies assessed the effect of novel DREADD ligands on reward-seeking behavior. METHODS: We first tested the possible effect of acute i.p. injection of low-to-moderate (0.1, 0.3, 1, 3 mg/kg) of CNO, C21, and J60 on motivated reward-seeking behavior in wild-type mice. We then examined whether a high dose (10 mg/kg) of these drugs might be able to alter responding. RESULTS: Low-to-moderate doses of all drugs and a high dose of CNO or C21 did not alter operant lick responding for a reward under a progressive ratio schedule of reinforcement, in which the number of operant lick responses to obtain a reward increases after each reward collection. However, high-dose J60 resulted in a total lack of responding that was later observed in an open field arena to be due to a sedative effect. CONCLUSIONS: This study provides definitive evidence that commonly used doses of CNO, C21, and J60 have negligible off-target effects on motivated reward-seeking but urges caution when using high doses of J60 due to sedative effects.
Asunto(s)
Clozapina , Drogas de Diseño , Ratones , Animales , Clozapina/farmacología , Recompensa , Drogas de Diseño/farmacologíaRESUMEN
Importin α4, which is encoded by the Kpna4 gene, is a well-characterized nuclear-cytoplasmic transport factor known to mediate transport of transcription factors including NF-κB. Here, we report that Kpna4 knock-out (KO) mice exhibit psychiatric disorder-related behavioral abnormalities such as anxiety-related behaviors, decreased social interaction, and sensorimotor gating deficits. Contrary to a previous study predicting attenuated NF-κB activity as a result of Kpna4 deficiency, we observed a significant increase in expression levels of NF-κB genes and proinflammatory cytokines such as TNFα, Il-1ß or Il-6 in the prefrontal cortex or basolateral amygdala of the KO mice. Moreover, examination of inflammatory responses in primary cells revealed that Kpna4 deficient cells have an increased inflammatory response, which was rescued by addition of not only full length, but also a nuclear transport-deficient truncation mutant of importin α4, suggesting contribution of its non-transport functions. Furthermore, RNAseq of sorted adult microglia and astrocytes and subsequent transcription factor analysis suggested increases in polycomb repressor complex 2 (PRC2) activity in Kpna4 KO cells. Taken together, importin α4 deficiency induces psychiatric disorder-related behavioral deficits in mice, along with an increased inflammatory response and possible alteration of PRC2 activity in glial cells.
Asunto(s)
Conducta Animal , Ratones Noqueados , Enfermedades Neuroinflamatorias , alfa Carioferinas , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Conducta Animal/fisiología , Masculino , Ansiedad/genética , Ansiedad/metabolismo , Corteza Prefrontal/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Citocinas/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Astrocitos/metabolismo , Complejo Nuclear Basolateral/metabolismoRESUMEN
Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin ß1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.