Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(5): 2434-2446, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36794723

RESUMEN

In Caenorhabditis elegans, the N6-methyladenosine (m6A) modification by METT10, at the 3'-splice sites in S-adenosyl-l-methionine (SAM) synthetase (sams) precursor mRNA (pre-mRNA), inhibits sams pre-mRNA splicing, promotes alternative splicing coupled with nonsense-mediated decay of the pre-mRNAs, and thereby maintains the cellular SAM level. Here, we present structural and functional analyses of C. elegans METT10. The structure of the N-terminal methyltransferase domain of METT10 is homologous to that of human METTL16, which installs the m6A modification in the 3'-UTR hairpins of methionine adenosyltransferase (MAT2A) pre-mRNA and regulates the MAT2A pre-mRNA splicing/stability and SAM homeostasis. Our biochemical analysis suggested that C. elegans METT10 recognizes the specific structural features of RNA surrounding the 3'-splice sites of sams pre-mRNAs, and shares a similar substrate RNA recognition mechanism with human METTL16. C. elegans METT10 also possesses a previously unrecognized functional C-terminal RNA-binding domain, kinase associated 1 (KA-1), which corresponds to the vertebrate-conserved region (VCR) of human METTL16. As in human METTL16, the KA-1 domain of C. elegans METT10 facilitates the m6A modification of the 3'-splice sites of sams pre-mRNAs. These results suggest the well-conserved mechanisms for the m6A modification of substrate RNAs between Homo sapiens and C. elegans, despite their different regulation mechanisms for SAM homeostasis.


Asunto(s)
Caenorhabditis elegans , Metiltransferasas , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Homeostasis/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Metiltransferasas/química , Precursores del ARN
2.
Nucleic Acids Res ; 48(9): 5157-5168, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32266935

RESUMEN

The N6-methyladenosine modification at position 43 (m6A43) of U6 snRNA is catalyzed by METTL16, and is important for the 5'-splice site recognition by U6 snRNA during pre-mRNA splicing. Human METTL16 consists of the N-terminal methyltransferase domain (MTD) and the C-terminal vertebrate conserved region (VCR). While the MTD has an intrinsic property to recognize a specific sequence in the distinct structural context of RNA, the VCR functions have remained uncharacterized. Here, we present structural and functional analyses of the human METTL16 VCR. The VCR increases the affinity of METTL16 toward U6 snRNA, and the conserved basic region in VCR is important for the METTL16-U6 snRNA interaction. The VCR structure is topologically homologous to the C-terminal RNA binding domain, KA1, in U6 snRNA-specific terminal uridylyl transferase 1 (TUT1). A chimera of the N-terminal MTD of METTL16 and the C-terminal KA1 of TUT1 methylated U6 snRNA more efficiently than the MTD, indicating the functional conservation of the VCR and KA1 for U6 snRNA biogenesis. The VCR interacts with the internal stem-loop (ISL) within U6 snRNA, and this interaction would induce the conformational rearrangement of the A43-containing region of U6 snRNA, thereby modifying the RNA structure to become suitable for productive catalysis by the MTD. Therefore, the MTD and VCR in METTL16 cooperatively facilitate the m6A43 U6 snRNA modification.


Asunto(s)
Metiltransferasas/química , ARN Nuclear Pequeño/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Metilación , Metiltransferasas/metabolismo , Conformación de Ácido Nucleico , Nucleotidiltransferasas/química , Unión Proteica , ARN Nuclear Pequeño/metabolismo
3.
RNA Biol ; 12(9): 922-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26274611

RESUMEN

MicroRNAs (miRNAs) are evolutionarily conserved small noncoding RNAs found in most plants and animals. The miRNA pathway regulates posttranscriptional gene expression through the deadenylation and translation repression of target mRNAs. Recent studies revealed that the early step of translation initiation is the target of "pure" translation repression by the miRNA pathway. Moreover, particularly in animals, the miRNA pathway is required for neuronal development, differentiation, and plasticity. In addition, some functions of miRNAs are regulated by RNA-binding proteins (RBPs) in neuronal cells. This review summarizes new insights about the molecular mechanisms of pure translation repression by miRNA pathway and the communication between the miRNA pathway and RBPs in neuronal local translation.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Regulación hacia Abajo , Silenciador del Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Humanos , Neuronas/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA