RESUMEN
Intact capsids of foot-and-mouth disease virus (FMDV) play a vital role in eliciting a protective immune response. Any change in the physico-chemical environment of the capsids results in dissociation and poor immunogenicity. Structural bioinfomatics studies have been carried out to predict the amino acids at the interpentameric region that resulted in the identification of mutant virus-like particles(VLPs) of FMDV serotype Asia1/IND/63/1972. The insect cell expressed VLPs were evaluated for their stability by sandwich ELISA. Among 10 mutants, S93H showed maximum retention of antigenicity at different temperatures, indicating its higher thermal stability as revealed by the in-silico analysis and retained the antigenic sites of the virus demonstrated by Sandwich ELISA. The concordant results of the liquid phase blocking ELISA for estimation of antibody titre of known sera with stable mutant VLP as antigen in place of virus antigen demonstrate its diagnostic potential. The stable mutant VLP elicited a robust immune response with 85.6 % protection in guinea pigs against virus challenge. The stabilized VLP based antigen requires minimum biosafety and cold storage for production and transit besides, complying with differentiation of infected from vaccinated animals. It can effectively replace the conventional virus handling during antigen production for prophylactic and diagnostic use.