Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401456, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693078

RESUMEN

Perovskite solar cells (PSCs) are attracting widespread research and attention as highly promising candidates in the field of electronic photovoltaics owing to their exceptional power conversion efficiency (PCE). However, rigid or flexible PSCs still face challenges in preparing full-coverage and low-defect perovskite films, as well as achieving highly reproducible and highly stable devices. Herein, a multifunctional additive 2-aminoethyl hydrogen sulfate (AES) is designed to regulate the film crystallization and thereby form flat and pinhole-free perovskite films. It is found that the introduction of AES can effectively passivate defects, restrain charge carrier recombination, and then achieve a higher fill factor. As seen with grazing incidence wide-angle X-ray scattering (GIWAXS), this approach does not affect the crystal orientation distribution. It is observed that AES addition shows a universality across different perovskite components since the PCE is improved up to 20.7% for FA0.97MA0.03Pb(I0.97Br0.03)3-AES, 22.85% for Cs0.05FA0.95PbI3-AES, 22.23% for FAPbI2.7Br0.3-AES, and 23.32% for FAPI-AES rigid devices. Remarkably, the non-encapsulated flexible Cs0.05 (FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 device with AES additive delivers a PCE of 20.1% and maintains over 97% of its initial efficiency under ambient conditions (25 ± 5% relative humidity) over 2280 h of aging.

2.
ACS Energy Lett ; 9(2): 388-399, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38356935

RESUMEN

The instability of perovskite absorbers under various environmental stressors is the most significant obstacle to widespread commercialization of perovskite solar cells. Herein, we study the evolution of crystal structure and microstrain present in naked triple-cation mixed CsMAFA-based perovskite films under heat, UV, and visible light (1 Sun) conditions by grazing-incidence wide-angle X-ray scattering (GIWAXS). We find that the microstrain is gradient distributed along the surface normal of the films, decreasing from the upper surface to regions deeper within the film. Moreover, heat, UV, and visible light treatments do not interfere with the crystalline orientations within annealed polycrystalline films. However, when subjected to heat, the naked perovskite films exhibit a rapid component decomposition, induced by phase separation and ion migration. Conversely, under exposure to UV and 1 Sun light soaking, the naked perovskite films undergo a self-optimization structure evolution during degradation and develop into smoother films with reduced surface potential fluctuations.

3.
ACS Appl Mater Interfaces ; 16(26): 33307-33315, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913824

RESUMEN

Poly(ethylene oxide) (PEO)-based composite electrolytes (PCEs) are considered as promising candidates for next-generation lithium-metal batteries (LMBs) due to their high safety, easy fabrication, and good electrochemical stability. Here, we utilize operando grazing-incidence small-angle and wide-angle X-ray scattering to probe the correlation of electrochemically induced changes and the buried morphology and crystalline structure of the PCE. Results show that the two irreversible reactions, PEO-Li+ reduction and TFSI- decomposition, cause changes in the crystalline structure, array orientation, and morphology of the PCE. In addition, the reversible Li plating/stripping process alters the inner morphology, especially the PEO-LiTFSI domain radius and distance between PEO-LiTFSI domains, rather than causing crystalline structure and orientation changes. This work provides a new path to monitor a working battery in real time and to a detailed understanding of the Li+ diffusion mechanism, which is essential for developing highly transferable and interface-stable PCE-based LMBs.

4.
Nanoscale Horiz ; 8(3): 383-395, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36723240

RESUMEN

The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA