Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R383-R400, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105761

RESUMEN

The hormone leptin reduces food intake through actions in the peripheral and central nervous systems, including in the hindbrain nucleus of the solitary tract (NTS). The NTS receives viscerosensory information via vagal afferents, including information from the gastrointestinal tract, which is then relayed to other central nervous system (CNS) sites critical for control of food intake. Leptin receptors (lepRs) are expressed by a subpopulation of NTS neurons, and knockdown of these receptors increases both food intake and body weight. Recently, we demonstrated that leptin increases vagal activation of lepR-expressing neurons via increased NMDA receptor (NMDAR) currents, thereby potentiating vagally evoked firing. Furthermore, chemogenetic activation of these neurons was recently shown to inhibit food intake. However, the vagal inputs these neurons receive had not been characterized. Here we performed whole cell recordings in brain slices taken from lepRCre × floxedTdTomato mice and found that lepR neurons of the NTS are directly activated by monosynaptic inputs from C-type afferents sensitive to the transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin. CCK administered onto NTS slices stimulated spontaneous glutamate release onto lepR neurons and induced action potential firing, an effect mediated by CCKR1. Interestingly, NMDAR activation contributed to the current carried by spontaneous excitatory postsynaptic currents (EPSCs) and enhanced CCK-induced firing. Peripheral CCK also increased c-fos expression in these neurons, suggesting they are activated by CCK-sensitive vagal afferents in vivo. Our results indicate that the majority of NTS lepR neurons receive direct inputs from CCK-sensitive C vagal-type afferents, with both peripheral and central CCK capable of activating these neurons and NMDARs able to potentiate these effects.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Núcleo Solitario , Animales , Ratones , Leptina/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/metabolismo , Nervio Vago/fisiología
2.
J Neurosci ; 40(37): 7054-7064, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817248

RESUMEN

Leptin signaling within the nucleus of the solitary tract (NTS) contributes to the control of food intake, and injections of leptin into the NTS reduce meal size and increase the efficacy of vagus-mediated satiation signals. Leptin receptors (LepRs) are expressed by vagal afferents as well as by a population of NTS neurons. However, the electrophysiological properties of LepR-expressing NTS neurons have not been well characterized, and it is unclear how leptin might act on these neurons to reduce food intake. To address this question, we recorded from LepR-expressing neurons in horizontal brain slices containing the NTS from male and female LepR-Cre X Rosa-tdTomato mice. We found that the vast majority of NTS LepR neurons received monosynaptic innervation from vagal afferent fibers and LepR neurons exhibited large synaptic NMDA receptor (NMDAR)-mediated currents compared with non-LepR neurons. During high-frequency stimulation of vagal afferents, leptin increased the size of NMDAR-mediated currents, but not AMPAR-mediated currents. Leptin also increased the size of evoked EPSPs and the ability of low-intensity solitary tract stimulation to evoke action potentials in LepR neurons. These effects of leptin were blocked by bath applying a competitive NMDAR antagonist (DCPP-ene) or by an NMDAR channel blocker applied through the recording pipette (MK-801). Last, feeding studies using male rats demonstrate that intra-NTS injections of DCPP-ene attenuate reduction of overnight food intake following intra-NTS leptin injection. Our results suggest that leptin acts in the NTS to reduce food intake by increasing NMDAR-mediated currents, thus enhancing NTS sensitivity to vagal inputs.SIGNIFICANCE STATEMENT Leptin is a hormone that critically impacts food intake and energy homeostasis. The nucleus of the solitary tract (NTS) is activated by vagal afferents from the gastrointestinal tract, which promotes termination of a meal. Injection of leptin into the NTS inhibits food intake, while knockdown of leptin receptors (LepRs) in NTS neurons increases food intake. However, little was known about how leptin acts in the NTS neurons to inhibit food intake. We found that leptin increases the sensitivity of LepR-expressing neurons to vagal inputs by increasing NMDA receptor-mediated synaptic currents and that NTS NMDAR activation contributes to leptin-induced reduction of food intake. These findings suggest a novel mechanism by which leptin, acting in the NTS, could potentiate gastrointestinal satiation signals.


Asunto(s)
Potenciales Postsinápticos Excitadores , Leptina/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/metabolismo , Nervio Vago/metabolismo , Animales , Maleato de Dizocilpina/farmacología , Ingestión de Alimentos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Prolina/análogos & derivados , Prolina/farmacología , Piridinas/farmacología , Ratas , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Nervio Vago/citología , Nervio Vago/fisiología
3.
Mol Cell Neurosci ; 106: 103500, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32438059

RESUMEN

Normal development of neuronal connections in the hippocampus requires neurotrophic signals, including the cytokine leptin. During neonatal development, leptin induces formation and maturation of dendritic spines, the main sites of glutamatergic synapses in the hippocampal neurons. However, the molecular mechanisms for leptin-induced synaptogenesis are not entirely understood. In this study, we reveal two novel targets of leptin in developing hippocampal neurons and address their role in synaptogenesis. First target is Kruppel-Like Factor 4 (KLF4), which we identified using a genome-wide target analysis strategy. We show that leptin upregulates KLF4 in hippocampal neurons and that leptin signaling is important for KLF4 expression in vivo. Furthermore, KLF4 is required for leptin-induced synaptogenesis, as shKLF4 blocks and upregulation of KLF4 phenocopies it. We go on to show that KLF4 requires its signal transducer and activator of transcription 3 (STAT3) binding site and thus potentially blocks STAT3 activity to induce synaptogenesis. Second, we show that leptin increases the expression of suppressor of cytokine signaling 3 (SOCS3), another well-known inhibitor of STAT3, in developing hippocampal neurons. SOCS3 is also required for leptin-induced synaptogenesis and sufficient to stimulate it alone. Finally, we show that constitutively active STAT3 blocks the effects of leptin on spine formation, while the targeted knockdown of STAT3 is sufficient to induce it. Overall, our data demonstrate that leptin increases the expression of both KLF4 and SOCS3, inhibiting the activity of STAT3 in the hippocampal neurons and resulting in the enhancement of glutamatergic synaptogenesis during neonatal development.


Asunto(s)
Hipocampo/efectos de los fármacos , Leptina/farmacología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Femenino , Hipocampo/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Sinapsis/metabolismo , Transcriptoma
4.
Am J Physiol Regul Integr Comp Physiol ; 316(1): R38-R49, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30354182

RESUMEN

Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4ß2 agonist RJR2403 and blocked by nAChRα4ß2 antagonist DHßE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.


Asunto(s)
Catecolaminas/metabolismo , Neuronas/efectos de los fármacos , Nicotina/farmacología , Núcleo Solitario/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones Transgénicos , Neuronas/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Núcleo Solitario/metabolismo , Transmisión Sináptica/efectos de los fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 313(3): R229-R239, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615161

RESUMEN

Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT3Rs. Decreasing the glucose concentration also decreased both basal and 5-HT3R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT3R activity, and glucokinase.


Asunto(s)
Potenciales de Acción/fisiología , Catecolaminas/metabolismo , Glucosa/metabolismo , Ácido Glutámico/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología
6.
J Neurosci ; 34(30): 10022-33, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057204

RESUMEN

Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and ß-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, ß-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Leptina/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
7.
J Neurosci ; 34(3): 717-25, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431430

RESUMEN

Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.


Asunto(s)
Contaminantes Ambientales/toxicidad , MicroARNs/biosíntesis , Neurogénesis/fisiología , Bifenilos Policlorados/toxicidad , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Neurogénesis/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Columna Vertebral/efectos de los fármacos , Columna Vertebral/fisiología , Sinapsis/efectos de los fármacos
8.
J Physiol ; 593(1): 111-25, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25281729

RESUMEN

Hindbrain NMDA receptors play important roles in reflexive and behavioural responses to vagal activation. NMDA receptors have also been shown to contribute to the synaptic responses of neurons in the nucleus of the solitary tract (NTS), but their exact role remains unclear. In this study we used whole cell patch-clamping techniques in rat horizontal brain slice to investigate the role of NMDA receptors in the fidelity of transmission across solitary tract afferent-NTS neuron synapses. Results show that NMDA receptors contribute up to 70% of the charge transferred across the synapse at high (>5 Hz) firing rates, but have little contribution at lower firing frequencies. Results also show that NMDA receptors critically contribute to the fidelity of transmission across these synapses during high frequency (>5 Hz) afferent discharge rates. This novel role of NMDA receptors may explain in part how primary visceral afferents, including vagal afferents, can maintain fidelity of transmission across a broad range of firing frequencies. Neurons within the nucleus of the solitary tract (NTS) receive vagal afferent innervations that initiate gastrointestinal and cardiovascular reflexes. Glutamate is the fast excitatory neurotransmitter released in the NTS by vagal afferents, which arrive there via the solitary tract (ST). ST stimulation elicits excitatory postsynaptic currents (EPSCs) in NTS neurons mediated by both AMPA- and NMDA-type glutamate receptors (-Rs). Vagal afferents exhibit a high probability of vesicle release and exhibit robust frequency-dependent depression due to presynaptic vesicle depletion. Nonetheless, synaptic throughput is maintained even at high frequencies of afferent activation. Here we test the hypothesis that postsynaptic NMDA-Rs are essential in maintaining throughput across ST-NTS synapses. Using patch clamp electrophysiology in horizontal brainstem slices, we found that NMDA-Rs, including NR2B subtypes, carry up to 70% of the charge transferred across the synapse during high frequency stimulations (>5 Hz). In contrast, their relative contribution to the ST-EPSC is much less during low (<2 Hz) frequency stimulations. Afferent-driven activation of NMDA-Rs produces a sustained depolarization during high, but not low, frequencies of stimulation as a result of relatively slow decay kinetics. Hence, NMDA-Rs are critical for maintaining action potential generation at high firing rates. These results demonstrate a novel role for NMDA-Rs enabling a high probability of release synapse to maintain the fidelity of synaptic transmission during high frequency firing when glutamate release and AMPA-R responses are reduced. They also suggest why NMDA-Rs are critical for responses that may depend on high rates of afferent discharge.


Asunto(s)
Receptores de N-Metil-D-Aspartato/fisiología , Núcleo Solitario/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Masculino , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
9.
J Pharmacol Exp Ther ; 351(2): 390-402, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25187433

RESUMEN

A subset of angiotensin IV (AngIV)-related molecules are known to possess procognitive/antidementia properties and have been considered as templates for potential therapeutics. However, this potential has not been realized because of two factors: 1) a lack of blood-brain barrier-penetrant analogs, and 2) the absence of a validated mechanism of action. The pharmacokinetic barrier has recently been overcome with the synthesis of the orally active, blood-brain barrier-permeable analog N-hexanoic-tyrosine-isoleucine-(6) aminohexanoic amide (dihexa). Therefore, the goal of this study was to elucidate the mechanism that underlies dihexa's procognitive activity. Here, we demonstrate that dihexa binds with high affinity to hepatocyte growth factor (HGF) and both dihexa and its parent compound Norleucine 1-AngIV (Nle(1)-AngIV) induce c-Met phosphorylation in the presence of subthreshold concentrations of HGF and augment HGF-dependent cell scattering. Further, dihexa and Nle(1)-AngIV induce hippocampal spinogenesis and synaptogenesis similar to HGF itself. These actions were inhibited by an HGF antagonist and a short hairpin RNA directed at c-Met. Most importantly, the procognitive/antidementia capacity of orally delivered dihexa was blocked by an HGF antagonist delivered intracerebroventricularly as measured using the Morris water maze task of spatial learning.


Asunto(s)
Angiotensina II/análogos & derivados , Cognición/fisiología , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Serina Endopeptidasas/metabolismo , Sinapsis/metabolismo , Angiotensina II/metabolismo , Animales , Línea Celular , Perros , Células HEK293 , Hipocampo/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Masculino , Oligopéptidos/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
10.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38368624

RESUMEN

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Asunto(s)
Conducta Alimentaria , Hipotálamo , Neuronas , Neuropéptido Y , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Ratas , Desoxiglucosa/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Neuropéptidos/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas/farmacología
11.
J Neurosci ; 32(46): 16530-8, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152635

RESUMEN

Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.


Asunto(s)
Catecolaminas/fisiología , Ácido Glutámico/fisiología , Neuronas/efectos de los fármacos , Serotonina/farmacología , Núcleo Solitario/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Ratones , Técnicas de Placa-Clamp , Piperazinas/farmacología , Pirazinas/farmacología , Quinoxalinas/farmacología , Receptores Presinapticos/efectos de los fármacos , Receptores de Serotonina 5-HT3/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Núcleo Solitario/citología , Tirosina 3-Monooxigenasa/genética
12.
J Pharmacol Exp Ther ; 344(1): 141-54, 2013 01.
Artículo en Inglés | MEDLINE | ID: mdl-23055539

RESUMEN

Angiotensin IV (AngIV: VYIHPF)-related peptides have long been recognized as procognitive agents with potential as antidementia therapeutics. Their development as useful therapeutics, however, has been limited by physiochemical properties that make them susceptible to metabolic degradation and impermeable to gut and blood-brain barriers. A previous study demonstrated that the core structural information required to impart the procognitive activity of the AngIV analog, norleucine(1)-angiotensin IV, resides in its three N-terminal amino acids, Nle-Tyr-Ile. The goal of this project was to chemically modify this tripeptide in such a way to enhance its metabolic stability and barrier permeability to produce a drug candidate with potential clinical utility. Initial results demonstrated that several N- and C-terminal modifications lead to dramatically improved stability while maintaining the capability to reverse scopolamine-induced deficits in Morris water maze performance and augment hippocampal synaptogenesis. Subsequent chemical modifications, which were designed to increase hydrophobicity and decrease hydrogen bonding, yielded an orally active, blood-barrier permeant, metabolically stabilized analog, N-hexanoic-Tyr-Ile-(6) aminohexanoic amide (dihexa), that exhibits excellent antidementia activity in the scopolamine and aged rat models and marked synaptogenic activity. These data suggest that dihexa may have therapeutic potential as a treatment of disorders, such as Alzheimer's disease, where augmented synaptic connectivity may be beneficial.


Asunto(s)
Angiotensina II/análogos & derivados , Demencia/prevención & control , Nootrópicos/farmacología , Oligopéptidos/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Barrera Hematoencefálica/metabolismo , Cromatografía Líquida de Alta Presión , Espinas Dendríticas/efectos de los fármacos , Semivida , Hipocampo/citología , Hipocampo/efectos de los fármacos , Enlace de Hidrógeno , Inmunohistoquímica , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Neurogénesis/efectos de los fármacos , Oligopéptidos/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Espectrofotometría Ultravioleta , Sinapsis/efectos de los fármacos , Transfección
13.
J Neurosci ; 31(9): 3484-92, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21368060

RESUMEN

Brainstem A2/C2 catecholamine (CA) neurons in the solitary tract nucleus (NTS) are thought to play an important role in the control of food intake and other homeostatic functions. We have previously demonstrated that these neurons, which send extensive projections to brain regions involved in the regulation of appetite, are strongly and directly activated by solitary tract (ST) visceral afferents. Ghrelin, a potent orexigenic peptide released from the stomach, is proposed to act in part through modulating NTS CA neurons but the underlying cellular mechanisms are unknown. Here, we identified CA neurons using transgenic mice that express enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). We then determined how ghrelin modulates TH-EGFP neurons using patch-clamp techniques in a horizontal brain slice preparation. Ghrelin inhibited the frequency of spontaneous glutamate inputs (spontaneous EPSCs) onto TH-EGFP neurons, including cholecystokinin-sensitive neurons, an effect blocked by the GHSR1 antagonist, d-Lys-3-GHRP-6. This resulted in a decrease in the basal firing rate of NTS TH-EGFP neurons, an effect blocked by the glutamate antagonist NBQX. Ghrelin also dose-dependently inhibited the amplitude of ST afferent evoked EPSCs (ST-EPSCs) in TH-EGFP NTS neurons, decreasing the success rate for ST-evoked action potentials. In addition, ghrelin decreased the frequency of mini-EPSCs suggesting its actions are presynaptic to reduce glutamate release. Last, inhibition by ghrelin of the ST-EPSCs was significantly increased by an 18 h fast. These results demonstrate a potential mechanism by which ghrelin inhibits NTS TH neurons through a pathway whose responsiveness is increased during fasting.


Asunto(s)
Catecolaminas/fisiología , Ghrelina/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Núcleo Solitario/fisiología , Aferentes Viscerales/fisiología , Animales , Catecolaminas/biosíntesis , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Ayuno/fisiología , Femenino , Ghrelina/farmacología , Masculino , Ratones , Ratones Transgénicos , Inhibición Neural/genética , Neuronas/metabolismo , Núcleo Solitario/citología , Aferentes Viscerales/citología
14.
J Pharmacol Exp Ther ; 339(1): 35-44, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21719467

RESUMEN

Angiotensin IV (AngIV; Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6))-related peptides have emerged as potential antidementia agents. However, their development as practical therapeutic agents has been impeded by a combination of metabolic instability, poor blood-brain barrier permeability, and an incomplete understanding of their mechanism of action. This study establishes the core structure contained within norleucine(1)-angiotensin IV (Nle(1)-AngIV) that is required for its procognitive activity. Results indicated that Nle(1)-AngIV-derived peptides as small as tetra- and tripeptides are capable of reversing scopolamine-induced deficits in Morris water maze performance. This identification of the active core structure contained within Nle(1)-AngIV represents an initial step in the development of AngIV-based procognitive drugs. The second objective of the study was to clarify the general mechanism of action of these peptides by assessing their ability to affect changes in dendritic spines. A correlation was observed between a peptide's procognitive activity and its capacity to increase spine numbers and enlarge spine head size. These data suggest that the procognitive activity of these molecules is attributable to their ability to augment synaptic connectivity.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Receptores de Angiotensina/química , Sinapsis/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Recuento de Células , Células Cultivadas , Cognición/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/ultraestructura , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Inmunohistoquímica , Masculino , Antagonistas Muscarínicos/farmacología , Técnicas de Placa-Clamp , Fragmentos de Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Escopolamina/antagonistas & inhibidores , Escopolamina/farmacología , Relación Estructura-Actividad , Transfección
15.
Sci Signal ; 14(683)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006608

RESUMEN

Developing hippocampal neurons undergo rapid synaptogenesis in response to neurotrophic signals to form and refine circuit connections. The adipokine leptin is a satiety factor with neurotrophic actions, which potentiates both glutamatergic and GABAergic synaptogenesis in the hippocampus during neonatal development. Brief exposure to leptin enhances GABAA receptor-dependent synaptic currents in hippocampal neurons. Here, using molecular and electrophysiological techniques, we found that leptin increased the surface localization of GABAA receptors and the number of functional GABAergic synapses in hippocampal cultures from male and female rat pups. Leptin increased the interaction between GABAA receptors and the Rho guanine exchange factor ß-PIX (a scaffolding protein at GABAergic postsynaptic sites) in a manner dependent on the kinase CaMKK. We also found that the leptin receptor and ß-PIX formed a complex, the amount of which transiently increased upon leptin receptor activation. Furthermore, Tyr985 in the leptin receptor and the SH3 domain of ß-PIX are crucial for this interaction, which was required for the developmental increase in GABAergic synaptogenesis. Our results suggest a mechanism by which leptin promotes GABAergic synaptogenesis in hippocampal neurons and reveal further complexity in leptin receptor signaling and its interactome.


Asunto(s)
Leptina , Neuronas , Factores de Intercambio de Guanina Nucleótido Rho , Animales , Femenino , Hipocampo/citología , Leptina/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo
16.
Mol Brain ; 13(1): 151, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183317

RESUMEN

The canonical physiological role of leptin is to regulate hunger and satiety acting on specific hypothalamic nuclei. Beyond this key metabolic function; leptin also regulates many aspects of development and functioning of neuronal hippocampal networks throughout life. Here we show that leptin controls chloride homeostasis in the developing rat hippocampus in vitro. The effect of leptin relies on the down-regulation of the potassium/chloride extruder KCC2 activity and is present during a restricted period of postnatal development. This study confirms and extends the role of leptin in the ontogenesis of functional GABAergic inhibition and helps understanding how abnormal levels of leptin may contribute to neurological disorders.


Asunto(s)
Cloruros/metabolismo , Regulación hacia Abajo , Hipocampo/metabolismo , Homeostasis , Leptina/farmacología , Simportadores/metabolismo , Animales , Animales Recién Nacidos , Regulación hacia Abajo/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratas Wistar , Cotransportadores de K Cl
17.
Endocrinology ; 161(2)2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31840160

RESUMEN

Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.


Asunto(s)
Hipocampo/fisiología , Leptina/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de Leptina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Animales , Células HEK293 , Humanos , Fosforilación , Cultivo Primario de Células , Ratas
18.
Sci Rep ; 10(1): 9028, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493978

RESUMEN

Brain-derived neurotrophic factor (BDNF) signals through its high affinity receptor Tropomyosin receptor kinase-B (TrkB) to regulate neuronal development, synapse formation and plasticity. In rodents, genetic disruption of Bdnf and TrkB leads to weight gain and a spectrum of neurobehavioural phenotypes. Here, we functionally characterised a de novo missense variant in BDNF and seven rare variants in TrkB identified in a large cohort of people with severe, childhood-onset obesity. In cells, the E183K BDNF variant resulted in impaired processing and secretion of the mature peptide. Multiple variants in the kinase domain and one variant in the extracellular domain of TrkB led to a loss of function through multiple signalling pathways, impaired neurite outgrowth and dominantly inhibited glutamatergic synaptogenesis in hippocampal neurons. BDNF/TrkB variant carriers exhibited learning difficulties, impaired memory, hyperactivity, stereotyped and sometimes, maladaptive behaviours. In conclusion, human loss of function BDNF/TrkB variants that impair hippocampal synaptogenesis may contribute to a spectrum of neurobehavioural disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neurogénesis/efectos de los fármacos , Receptor trkB/metabolismo , Adolescente , Niño , Preescolar , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Neurogénesis/fisiología , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Proteínas Quinasas , Transducción de Señal/efectos de los fármacos
19.
Endocrinology ; 160(8): 1982-1998, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199479

RESUMEN

Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.


Asunto(s)
Endopeptidasas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Leptina/farmacología , Receptores de Leptina/metabolismo , Sinapsis/fisiología , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ubiquitina Tiolesterasa/genética
20.
J Neurosci ; 27(48): 13292-302, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18045923

RESUMEN

Brainstem A2/C2 neurons are catecholamine (CA) neurons within the solitary tract nucleus (NTS) that influence many homeostatic functions, including cardiovascular reflexes, food intake, and stress. Because NTS is a major interface between sensory visceral afferents and the CNS, NTS CA neurons are ideally suited to coordinate complex responses by their projections to multiple brain regions. To test how NTS CA neurons process visceral afferent information carried by solitary tract (ST) afferents, we identified CA neurons using transgenic mice expressing TH-EGFP (enhanced green fluorescent protein under the control of the tyrosine hydroxylase promoter) and recorded synaptic responses to ST activation in horizontal slices. ST shocks evoked large-amplitude, short-latency, glutamatergic EPSCs (ST-EPSCs) in 90% of NTS CA neurons. Within neurons, ST-EPSCs had constant latency, rarely failed, and depressed substantially at high ST frequencies, indicating that NTS CA neurons receive direct monosynaptic connections from afferent terminals. NTS CA neurons received direct ST inputs from only one or two afferent fibers, with one-half also receiving smaller amplitude indirect inputs. Up to 90% of ST shocks evoked action potentials in NTS CA neurons. However, transmission of sensory afferent information through NTS CA neurons critically depended on the expression of an A-type potassium current (I(KA)), which when active attenuated ST-activated action potentials to a 37% success rate. The satiety peptide, cholecystokinin, presynaptically facilitated glutamate transmission in one-half of NTS CA neurons. Thus, NTS CA neurons are directly driven by visceral afferents with output being modulated by presynaptic peptide receptors and postsynaptic potassium channels.


Asunto(s)
Vías Aferentes/fisiología , Catecolaminas/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Núcleo Solitario/citología , 4-Aminopiridina/farmacología , Análisis de Varianza , Animales , Colecistoquinina/farmacología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Piridazinas/farmacología , Quinoxalinas/farmacología , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA