Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Periodontol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109394

RESUMEN

AIM: The aim of this analysis was to compare a clinical periodontal prognostic system and a developed and externally validated artificial intelligence (AI)-based model for the prediction of tooth loss in periodontitis patients under supportive periodontal care (SPC) for 10 years. MATERIALS AND METHODS: Clinical and radiographic parameters were analysed to assign tooth prognosis with a tooth prognostic system (TPS) by two calibrated examiners from different clinical centres (London and Pittsburgh). The prediction model was developed on the London dataset. A logistic regression model (LR) and a neural network model (NN) were developed to analyse the data. These models were externally validated on the Pittsburgh dataset. The primary outcome was 10-year tooth loss in teeth assigned with 'unfavourable' prognosis. RESULTS: A total of 1626 teeth in 69 patients were included in the London cohort (development cohort), while 2792 teeth in 116 patients were included in the Pittsburgh cohort (external validated dataset). While the TPS in the validation cohort exhibited high specificity (99.96%), moderate positive predictive value (PPV = 50.0%) and very low sensitivity (0.85%), the AI-based model showed moderate specificity (NN = 52.26%, LR = 67.59%), high sensitivity (NN = 98.29%, LR = 91.45%), and high PPV (NN = 89.1%, LR = 88.6%). CONCLUSIONS: AI-based models showed comparable results with the clinical prediction model, with a better performance in specific prognostic risk categories, confirming AI prediction model as a promising tool for the prediction of tooth loss.

2.
Lasers Med Sci ; 30(7): 2003-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24880927

RESUMEN

The liver regeneration is an important clinical issue after major hepatectomies. Unfortunately, many organs (including the liver) exhibit age-related impairments regarding their regenerative capacity. Recent studies found that low-power laser irradiation (LPLI) has a stimulatory effect on the liver regeneration process. However, its effects in elderly remain unknown. Thus, this study aimed to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized elderly rats exposed to LPLI. The effects of 15 min of LPLI (wavelength of 632.8 nm; fluence of 0.97 J/cm(2); total energy delivered of 3.6 J) were evaluated in hepatectomized elderly Wistar male rats. Afterwards, through immunoblotting approaches, the protein expression and phosphorylation levels of hepatocyte growth factor (HGF), Met, Akt and Erk 1/2 signaling pathways as well as the proliferating cell nuclear antigen (PCNA) were investigated. It was observed that LPLI was not able to improve liver regeneration in elderly rats as evidenced by the lack of improvement of HGF and PCNA protein expression or phosphorylation levels of Met, Akt and Erk 1/2 in the remnant livers. In sum, this study demonstrated that the main molecular pathway, i.e. HGF/Met → Akt and Erk 1/2 → PCNA, involved in the hepatic regeneration process was not improved by LPLI in elderly hepatectomized rats, which in turn rules out LPLI as an adjuvant therapy, as observed in this protocol of liver regeneration evaluation (i.e. at 48 h after 70 % resection), in elderly.


Asunto(s)
Envejecimiento , Regeneración Hepática/efectos de la radiación , Terapia por Luz de Baja Intensidad , Animales , Factor de Crecimiento de Hepatocito/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Hígado/efectos de la radiación , Sistema de Señalización de MAP Quinasas , Masculino , Antígeno Nuclear de Célula en Proliferación , Ratas , Ratas Wistar
3.
Lasers Med Sci ; 28(6): 1511-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23334786

RESUMEN

A simple, easy, and safe procedure aiming to improve liver regeneration could be of great clinical benefit in critical situations such as major hepatectomy, trauma, or hemorrhage. Low-power laser irradiation (LPLI) has come into a wide range of use in clinical practice by inducing regeneration in healthy and injured tissues. However, the effect of LPLI on the process of liver regeneration, especially those related to the molecular mechanisms, is not fully understood. Thus, the aim of the present study was to investigate the main molecular mechanisms involved in liver regeneration of partially hepatectomized rats exposed to LPLI. We used Wistar male rats, which had their remaining liver irradiated or not with LPLI (wavelength of 632.8 nm and fluence of 65 mW/cm(2)) for 15 min after a 70% hepatectomy. We subsequently investigated hepatocyte growth factor (HGF), Met, Akt, and Erk 1/2 signaling pathways through protein expression and phosphorylation analyses along with cell proliferation (proliferating cell nuclear antigen (PCNA) and Ki-67) using immunoblotting and histological studies. Our results show that LPLI can improve liver regeneration as shown by increased HGF protein expression and the phosphorylation levels of Met, Akt, and Erk 1/2 accompanied by higher levels of the PCNA and Ki-67 protein in the remnant livers. In summary, our results suggest that LPLI may play a clinical role as a simple, fast, and easy-to-perform strategy in order to enhance the liver regenerative capacity of a small liver remnant after hepatectomy.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Regeneración Hepática/efectos de la radiación , Terapia por Luz de Baja Intensidad , Animales , Hepatectomía , Antígeno Ki-67/metabolismo , Regeneración Hepática/fisiología , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Masculino , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de la radiación
4.
Artículo en Inglés | MEDLINE | ID: mdl-30214428

RESUMEN

In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in ß-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.

5.
J Nutr Biochem ; 50: 16-25, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28968517

RESUMEN

Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Disbiosis/prevención & control , Microbioma Gastrointestinal , Resistencia a la Insulina , Mucosa Intestinal/fisiopatología , Obesidad/dietoterapia , Probióticos/uso terapéutico , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Regulación del Apetito , Bifidobacterium bifidum/clasificación , Bifidobacterium bifidum/crecimiento & desarrollo , Bifidobacterium bifidum/inmunología , Bifidobacterium bifidum/aislamiento & purificación , Permeabilidad de la Membrana Celular , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/microbiología , Dieta Alta en Grasa/efectos adversos , Disbiosis/etiología , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Microbioma Gastrointestinal/inmunología , Técnica de Clampeo de la Glucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lactobacillus acidophilus/clasificación , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/inmunología , Lactobacillus acidophilus/aislamiento & purificación , Lacticaseibacillus rhamnosus/clasificación , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/inmunología , Lacticaseibacillus rhamnosus/aislamiento & purificación , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Tipificación Molecular , Obesidad/metabolismo , Obesidad/patología , Obesidad/fisiopatología , Distribución Aleatoria
6.
Obesity (Silver Spring) ; 21(12): 2545-56, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23512570

RESUMEN

OBJECTIVE: It has become clear that exercise may be a useful therapy in the insulin resistance treatment, as it has anti-inflammatory effects and improves insulin sensitivity. However, it remains uncertain whether exercise affects the adipocytes or infiltrated macrophages. Thus, the aim was to investigate the effects of acute exercise on the inflammatory status and insulin signaling of the white adipose tissue (WAT) fractions (stromal-vascular fraction [SVF] and adipocytes). DESIGN AND METHODS: The effect of acute swimming exercise was investigated on insulin sensitivity, insulin signaling, inflammatory pathways in the WAT fractions of high-fat fed Wistar rats. Additionally, macrophage infiltration and polarization were analyzed in the WAT. RESULTS: Acute exercise can improve insulin signaling in WAT fractions, along with a phenotypic switch from M1- to M2-macrophages in obese rats, as indicated by a marked increase in macrophage galactose-type C-type lectin 1-positive cells in WAT was observed. Additionally, exercise promoted a reduction in circulating levels of lipopolysaccharide, and toll-like receptor 4 activity along with TNF-alpha, IL-1-beta and MCP-1 mRNA levels in WAT fractions. CONCLUSIONS: These data suggest that acute exercise improves insulin signaling in the WAT, at least in part by inducing macrophage polarization toward the M2-state.


Asunto(s)
Tejido Adiposo Blanco/citología , Dieta Alta en Grasa/efectos adversos , Macrófagos/metabolismo , Obesidad/metabolismo , Condicionamiento Físico Animal , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Quimiocina CCL2/sangre , Insulina/sangre , Resistencia a la Insulina , Interleucina-1/sangre , Interleucina-10/sangre , Lipopolisacáridos/sangre , Masculino , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/sangre
7.
Obesity (Silver Spring) ; 21(12): 2452-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23519983

RESUMEN

OBJECTIVE: The double-stranded RNA-dependent protein kinase (PKR) was recently implicated in regulating molecular integration of nutrient- and pathogen-sensing pathways in obese mice. However, its modulation in human tissues in situations of insulin resistance has not been investigated. The present study was performed to first determine the tissue expression and phosphorylation levels of PKR in the liver, muscle, and adipose tissue in obese humans, and also the modulation of this protein in the adipose tissue of obese patients after bariatric surgery. DESIGN AND METHODS: Eleven obese subjects who were scheduled to undergo Roux-en-Y Gastric Bypass Procedure participated in this study. Nine apparently healthy lean subjects as a control group were also included. RESULTS: Our data show that PKR is activated in liver, muscle, and adipose tissue of obese humans and, after bariatric surgery, there is a clear reduction in PKR activation accompanied by a decrease in protein kinase-like endoplasmic reticulum kinase, c-Jun N-terminal kinase, inhibitor of kappa ß kinase, and insulin receptor substrate-1 serine 312 phosphorylation in subcutaneous adipose tissue from these patients. CONCLUSION: Thus, it is proposed that PKR is an important mediator of obesity-induced insulin resistance and a potential target for the therapy.


Asunto(s)
Resistencia a la Insulina , Obesidad/enzimología , eIF-2 Quinasa/metabolismo , Adulto , Antropometría , Glucemia/metabolismo , Índice de Masa Corporal , Estudios de Casos y Controles , Femenino , Derivación Gástrica , Humanos , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/enzimología , Masculino , Músculo Esquelético/enzimología , Obesidad/cirugía , Fosforilación , Grasa Subcutánea/enzimología , eIF-2 Quinasa/genética
8.
Endocrinology ; 153(12): 5760-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23024263

RESUMEN

Insulin resistance is present in obesity and in type 2 diabetes and is associated with islet cell hyperplasia and hyperinsulinemia, but the driving forces behind this compensatory mechanism are incompletely understood. Previous data have suggested the involvement of an unknown circulating insulin resistance-related ß-cell growth factor. In this context, looking for candidates to be a circulating factor, we realized that hepatocyte growth factor (HGF) is a strong candidate as a link between insulin resistance and increased mass of islets/hyperinsulinemia. Our approach aimed to show a possible cause-effect relationship between increase in circulating HGF levels and compensatory islet hyperplasia/hyperinsulinemia by showing the strength of the association, whether or not is a dose-dependent response, the temporality, consistency, plausibility, and reversibility of the association. In this regard, our data showed: 1) a strong and consistent correlation between HGF and the compensatory mechanism in three animal models of insulin resistance; 2) HGF increases ß-cell mass in a dose-dependent manner; 3) blocking HGF shuts down the compensatory mechanisms; and 4) an increase in HGF levels seems to precede the compensatory response associated with insulin resistance, indicating that these events occur in a sequential mode. Additionally, blockages of HGF receptor (Met) worsen the impaired insulin-induced insulin signaling in liver of diet-induced obesity rats. Overall, our data indicate that HGF is a growth factor playing a key role in islet mass increase and hyperinsulinemia in diet-induced obesity rats and suggest that the HGF-Met axis may have a role on insulin signaling in the liver.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Resistencia a la Insulina , Proteínas Proto-Oncogénicas c-met/metabolismo , Alimentación Animal , Animales , Dieta , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Obesidad/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Factores de Tiempo
9.
Endocrinology ; 152(11): 4080-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21896669

RESUMEN

Obesity and type 2 diabetes are characterized by insulin resistance, and the common basis of these events is a chronic and systemic inflammatory process marked by the activation of the c-Jun N-terminal kinase (JNK) and inhibitor-κB kinase (IKKß)/nuclear factor-κB (NFκB) pathways, up-regulated cytokine synthesis, and endoplasmic reticulum dysfunction. The aim of this study was to evaluate the effects of diacerhein administration, an antiinflammatory drug that reduces the levels of inflammatory cytokines, on insulin sensitivity and signaling in diet-induced obese (DIO) mice. Swiss mice were fed with conventional chow (control group) or a high-fat diet (DIO group). Later, DIO mice were randomly subdivided into a new subgroup (DAR) that received 20 mg/kg diacerhein for 10 d. Western blotting was used to quantify the expression and phosphorylation of insulin receptor, insulin receptor substrate 1, and Akt and of inflammatory mediators that modulate insulin signaling in a negative manner (IKKß, JNK, and inducible nitric oxide synthase). We show here, for the first time, that the administration of diacerhein in DIO mice improved endoplasmic reticulum stress, reduced JNK and IKKß phosphorylation, and resulted in a marked improvement in fasting glucose, a decrease in macrophage infiltration in adipose tissue, and a reduced expression and activity of proinflammatory mediators accompanied by an improvement in the insulin signaling mainly in the liver and adipose tissue. Taken together, these results indicate that diacerhein treatment improves insulin sensitivity in obesity, mediated by the reversal of subclinical inflammation, and that this drug may be an alternative therapy for insulin resistance.


Asunto(s)
Antraquinonas/uso terapéutico , Antiinflamatorios/uso terapéutico , Dieta Alta en Grasa , Intolerancia a la Glucosa/tratamiento farmacológico , Resistencia a la Insulina/fisiología , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Antraquinonas/farmacología , Antiinflamatorios/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones , Ratones Obesos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA