Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544852

RESUMEN

Electrode arrays are widely used for multipoint recording of electrophysiological activities, and organic electronics have been utilized to achieve both high performance and biocompatibility. However, extracellular electrode arrays record the field potential instead of the membrane potential itself, resulting in the loss of information and signal amplitude. Although much effort has been dedicated to developing intracellular access methods, their three-dimensional structures and advanced protocols prohibited implementation with organic electronics. Here, we show an organic electrochemical transistor (OECT) matrix for the intracellular action potential recording. The driving voltage of sensor matrix simultaneously causes electroporation so that intracellular action potentials are recorded with simple equipment. The amplitude of the recorded peaks was larger than that of an extracellular field potential recording, and it was further enhanced by tuning the driving voltage and geometry of OECTs. The capability of miniaturization and multiplexed recording was demonstrated through a 4 × 4 action potential mapping using a matrix of 5- × 5-µm2 OECTs. Those features are realized using a mild fabrication process and a simple circuit without limiting the potential applications of functional organic electronics.


Asunto(s)
Potenciales de Acción , Técnicas Biosensibles/métodos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Transistores Electrónicos/estadística & datos numéricos , Células Cultivadas , Electroporación , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
2.
Micromachines (Basel) ; 13(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35457855

RESUMEN

Recent technology advances have led urology to become one of the leading specialities to utilise novel electronic systems to manage urological ailments. Contemporary bladder management strategies such as urinary catheters can provide a solution but leave the user mentally and physically debilitated. The unique properties of modern electronic devices, i.e., flexibility, stretchability, and biocompatibility, have allowed a plethora of new technologies to emerge. Many novel electronic device solutions in urology have been developed for treating impaired bladder disorders. These disorders include overactive bladder (OAB), underactive bladder (UAB) and other-urinary-affecting disorders (OUAD). This paper reviews common causes and conservative treatment strategies for OAB, UAB and OUAD, discussing the challenges and drawbacks of such treatments. Subsequently, this paper gives insight into clinically approved and research-based electronic advances in urology. Advances in this area cover bladder-stimulation and -monitoring devices, robot-assistive surgery, and bladder and sphincter prosthesis. This study aims to introduce the latest advances in electronic solutions for urology, comparing their advantages and disadvantages, and concluding with open problems for future urological device solutions.

3.
ACS Nano ; 12(4): 3487-3501, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29630352

RESUMEN

Aging, neurologic diseases, and diabetes are a few risk factors that may lead to underactive bladder (UAB) syndrome. Despite all of the serious consequences of UAB, current solutions, the most common being ureteric catheterization, are all accompanied by serious shortcomings. The necessity of multiple catheterizations per day for a physically able patient not only reduces the quality of life with constant discomfort and pain but also can end up causing serious complications. Here, we present a bistable actuator to empty the bladder by incorporating shape memory alloy components integrated on flexible polyvinyl chloride sheets. The introduction of two compression and restoration phases for the actuator allows for repeated actuation for a more complete voiding of the bladder. The proposed actuator exhibits one of the highest reported voiding percentages of up to 78% of the bladder volume in an anesthetized rat after only 20 s of actuation. This amount of voiding is comparable to the common catheterization method, and its one time implantation onto the bladder rectifies the drawbacks of multiple catheterizations per day. Furthermore, the scaling of the device for animal models larger than rats can be easily achieved by adjusting the number of nitinol springs. For neurogenic UAB patients with degraded nerve function as well as degenerated detrusor muscle, we integrate a flexible triboelectric nanogenerator sensor with the actuator to detect the fullness of the bladder. The sensitivity of this sensor to the filling status of the bladder shows its capability for defining a self-control system in the future that would allow autonomous micturition.


Asunto(s)
Técnicas Biosensibles , Suministros de Energía Eléctrica , Nanotecnología , Níquel/química , Titanio/química , Vejiga Urinaria de Baja Actividad/diagnóstico , Animales , Femenino , Humanos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA