Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo de estudio
País de afiliación
Intervalo de año de publicación
1.
Poult Sci ; 103(11): 104224, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39216269

RESUMEN

Enterococcus cecorum (EC) infection is an emerging endemic disease in UK and global broiler poultry with major economic impact and welfare concerns. There are significant research gaps with regards to EC pathogenesis, source of infection, transmission routes and early detection of disease, which this study aimed to address. In this prospective study, 725 environmental samples were collected from 4 broiler farms (A-D) the day before chick placement (d 1) and through the subsequent crop (d 7, 14, and 21). Cecal swabs were collected from birds that died of natural causes during the study period. A sample of birds that had been found dead or were culled for health reasons, were presented for post-mortem and samples were taken from lesions for EC culture. DNA was extracted from all environmental samples and EC detected using a qPCR and MALDI-TOF. Two EC isolates from diseased birds were inoculated on concrete slabs and incubated at 23°C and 32°C followed by swabbing of concrete culturing and determination of EC cfu at defined time points. Alongside environmental and bird sampling commercially available, smart camera systems were installed in selected houses on each farm to monitor bird activity and distribution. No EC outbreak occurred during the study, however, it was detected by qPCR in 215/725 (29.7 %) of all samples collected. Also, EC DNA was detected on average in 37% of samples collected on d 1, with approx. 88% of samples from chick paper being positive. Despite this, it was only cultured from 3 ceca samples and joint fluids of two infected birds from farm B on d 14 and 21. The survival experiments using isolates from infected chickens showed EC can survive on concrete for at least 21 d. This study provides invaluable insights into transmission pathways and tenacity of EC. Further studies are needed to determine strain characteristics in relation to their ability to cause disease and to further elucidate the sources of infection on poultry farms.

2.
Braz J Microbiol ; 47(1): 150-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26887238

RESUMEN

Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n=134), their owners (n=134), and humans who claim to have no contact with dogs (n=44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains.


Asunto(s)
Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Genotipo , beta-Lactamasas/genética , Animales , Antibacterianos/farmacología , Perros , Electroforesis en Gel de Campo Pulsado , Escherichia coli/genética , Heces/microbiología , Humanos , Tipificación Molecular , Mascotas , Filogenia
3.
Arq. bras. med. vet. zootec. (Online) ; 69(5): 1073-1082, set.-out. 2017. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-876983

RESUMEN

Respiratory diseases are common in young horses but little is known about such infections in mule foals. This study aimed to characterize Escherichia coli and Klebsiella sp. isolated from tracheal wash (TW) and fecal samples (FS) of mule foals, with or without cytological evidence of respiratory disease. Strains were analyzed against 13 antimicrobials, for presence of Extended spectrum beta-lactamase (ESBL), and virulence genes. Phylogrouping and Randomic (RAPD)-PCR profiles were used to evaluate their genetic relatedness. E. coli strains from TW and FS showed greatest resistance to tetracycline, while Klebsiella strains were mainly resistant to ampicillin; multidrug resistance and ESBL production were also detected. The blaCTX gene prevailed among the E. coli isolates, while the blaSHV gene was more frequently found in K. pneumoniae. The fimH gene was detected in most of the isolates and multiple virulence factors were identified in three E. coli isolates. Most of the E. coli isolates belonged to the B1 phylogroup, but B2 strains displayed more virulence genes. The RAPD assay revealed genetic diversity among strains and was able to distinguish FS isolates from TW isolates. Knowledge of the bacteria associated with the respiratory tract of mule foals is important in the treatment of sick animals.(AU)


Doenças respiratórias são comuns em potros de equinos, porém pouco se sabe sobre tais infecções em potros de muar. Este estudo buscou caracterizar Escherichia coli e Klebsiella sp. isolados de lavados traqueais (TW) e amostras fecais (FS) de potros de muar com e sem evidências citológicas de doença respiratória. As amostras bacterianas foram testadas contra 13 antimicrobianos, para a presença de genes de resistência estendida às betalactamases (ESBL) e de virulência. Filogrupagem e perfis de PCR randômicos (RAPD) foram usados para avaliar sua relação genética. As amostras de E. coli de TW e FS mostraram maior resistência à tetraciclina, enquanto as amostras de Klebsiella foram mais resistentes à ampicilina; multirresistência e produção de ESBL também foram detectadas. O gene blaCTX foi mais frequente entre E. coli, enquanto o gene blaSHV foi mais encontrado entre K. pneumoniae. O gene fimH foi detectado na maioria dos isolados de E. coli, enquanto múltiplos genes de virulência foram identificados em três isolados de E. coli. A maioria dos isolados de E. coli pertenceu ao filogrupo B1, porém somente isolados do filogrupo B2 apresentaram mais genes de virulência. Os ensaios de RAPD demonstraram a diversidade genética entre as amostras e distinguiram amostras TW e FS. O conhecimento de bactérias associadas a infecções de trato respiratório de potros de muar é importante no tratamento de animais doentes.(AU)


Asunto(s)
Animales , Farmacorresistencia Microbiana , Equidae/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Klebsiella/genética , Klebsiella/patogenicidad , Enfermedades Respiratorias/veterinaria , Virulencia
4.
Braz. j. microbiol ; 47(1): 150-158, Jan.-Mar. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-775101

RESUMEN

Abstract Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains.


Asunto(s)
Animales , Perros , Humanos , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Genotipo , beta-Lactamasas/genética , Antibacterianos/farmacología , Electroforesis en Gel de Campo Pulsado , Escherichia coli/genética , Heces/microbiología , Tipificación Molecular , Mascotas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA