Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Genomics ; 56(11): 791-806, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39250149

RESUMEN

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R. A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic informational field theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Although GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in Ovis aries related to bone growth (dataset 1) and to a series of linked metabolic and epigenetic pathways (dataset 2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.NEW & NOTEWORTHY The genetic basis of complex traits remains challenging to investigate using classic genome-wide association studies (GWASs). Given the success of gene editing technologies, this point needs to be addressed urgently since there can only be useful editing technologies whether precise genotype-phenotype mapping information is available initially. Genomic informational field theory (GIFT) is a new mapping method designed to increase the investigative power of biological/medical datasets suggesting, in turn, the need to rethink the conceptual bases of quantitative genetics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Humanos , Genómica/métodos , Estudios de Asociación Genética/métodos , Teoría de la Información
2.
BMC Biol ; 20(1): 14, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35027054

RESUMEN

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Asunto(s)
Virus de la Fiebre Porcina Africana , Enfermedades Transmisibles , Virus de la Fiebre Porcina Africana/genética , Animales , Interacciones Huésped-Patógeno/genética , Macrófagos , Células Madre , Porcinos
3.
PLoS Genet ; 15(1): e1007759, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699111

RESUMEN

Balancing selection provides a plausible explanation for the maintenance of deleterious alleles at moderate frequency in livestock, including lethal recessives exhibiting heterozygous advantage in carriers. In the current study, a leg weakness syndrome causing mortality of piglets in a commercial line showed monogenic recessive inheritance, and a region on chromosome 15 associated with the syndrome was identified by homozygosity mapping. Whole genome resequencing of cases and controls identified a mutation causing a premature stop codon within exon 3 of the porcine Myostatin (MSTN) gene, similar to those causing a double-muscling phenotype observed in several mammalian species. The MSTN mutation was in Hardy-Weinberg equilibrium in the population at birth, but significantly distorted amongst animals still in the herd at 110 kg, due to an absence of homozygous mutant genotypes. In heterozygous form, the MSTN mutation was associated with a major increase in muscle depth and decrease in fat depth, suggesting that the deleterious allele was maintained at moderate frequency due to heterozygous advantage (allele frequency, q = 0.22). Knockout of the porcine MSTN by gene editing has previously been linked to problems of low piglet survival and lameness. This MSTN mutation is an example of putative balancing selection in livestock, providing a plausible explanation for the lack of disrupting MSTN mutations in pigs despite many generations of selection for lean growth.


Asunto(s)
Músculo Esquelético/fisiopatología , Miostatina/genética , Selección Genética , Enfermedades de los Porcinos/genética , Alelos , Animales , Codón sin Sentido/genética , Pie/fisiopatología , Heterocigoto , Homocigoto , Mutación , Fenotipo , Sus scrofa/genética , Porcinos , Enfermedades de los Porcinos/fisiopatología
4.
BMC Genomics ; 21(1): 751, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126848

RESUMEN

BACKGROUND: The human transcriptome annotation is regarded as one of the most complete of any eukaryotic species. However, limitations in sequencing technologies have biased the annotation toward multi-exonic protein coding genes. Accurate high-throughput long read transcript sequencing can now provide additional evidence for rare transcripts and genes such as mono-exonic and non-coding genes that were previously either undetectable or impossible to differentiate from sequencing noise. RESULTS: We developed the Transcriptome Annotation by Modular Algorithms (TAMA) software to leverage the power of long read transcript sequencing and address the issues with current data processing pipelines. TAMA achieved high sensitivity and precision for gene and transcript model predictions in both reference guided and unguided approaches in our benchmark tests using simulated Pacific Biosciences (PacBio) and Nanopore sequencing data and real PacBio datasets. By analyzing PacBio Sequel II Iso-Seq sequencing data of the Universal Human Reference RNA (UHRR) using TAMA and other commonly used tools, we found that the convention of using alignment identity to measure error correction performance does not reflect actual gain in accuracy of predicted transcript models. In addition, inter-read error correction can cause major changes to read mapping, resulting in potentially over 6 K erroneous gene model predictions in the Iso-Seq based human genome annotation. Using TAMA's genome assembly based error correction and gene feature evidence, we predicted 2566 putative novel non-coding genes and 1557 putative novel protein coding gene models. CONCLUSIONS: Long read transcript sequencing data has the power to identify novel genes within the highly annotated human genome. The use of parameter tuning and extensive output information of the TAMA software package allows for in depth exploration of eukaryotic transcriptomes. We have found long read data based evidence for thousands of unannotated genes within the human genome. More development in sequencing library preparation and data processing are required for differentiating sequencing noise from real genes in long read RNA sequencing data.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN , Programas Informáticos
5.
PLoS Genet ; 13(9): e1006997, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28915238

RESUMEN

Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.


Asunto(s)
Perfilación de la Expresión Génica , Genoma , Oveja Doméstica/genética , Transcriptoma/genética , Animales , Cruzamiento , Análisis por Conglomerados , Leche , Especificidad de Órganos/genética
6.
J Virol ; 92(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29925651

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 protein is expressed at high levels on the surface of specific macrophage types, and a soluble form is circulating in blood. CD163 has been described as a fusion receptor for PRRSV, with the scavenger receptor cysteine-rich domain 5 (SRCR5) region having been shown to be the interaction site for the virus. As reported previously, we have generated pigs in which exon 7 of the CD163 gene has been deleted using CRISPR/Cas9 editing in pig zygotes. These pigs express CD163 protein lacking SRCR5 (ΔSRCR5 CD163) and show no adverse effects when maintained under standard husbandry conditions. Not only was ΔSRCR5 CD163 detected on the surface of macrophage subsets, but the secreted, soluble protein can also be detected in the serum of the edited pigs, as shown here by a porcine soluble CD163-specific enzyme-linked immunosorbent assay (ELISA). Previous results showed that primary macrophage cells from ΔSRCR5 CD163 animals are resistant to PRRSV-1 subtype 1, 2, and 3 as well as PRRSV-2 infection in vitro Here, ΔSRCR5 pigs were challenged with a highly virulent PRRSV-1 subtype 2 strain. In contrast to the wild-type control group, ΔSRCR5 pigs showed no signs of infection and no viremia or antibody response indicative of a productive infection. Histopathological analysis of lung and lymph node tissue showed no presence of virus-replicating cells in either tissue. This shows that ΔSRCR5 pigs are fully resistant to infection by the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) is the etiological agent of PRRS, causing late-term abortions, stillbirths, and respiratory disease in pigs, incurring major economic losses to the worldwide pig industry. The virus is highly mutagenic and can be divided into two species, PRRSV-1 and PRRSV-2, each containing several subtypes. Current control strategies mainly involve biosecurity measures, depopulation, and vaccination. Vaccines are at best only partially protective against infection with heterologous subtypes and sublineages, and modified live vaccines have frequently been reported to revert to virulence. Here, we demonstrate that a genetic-control approach results in complete resistance to PRRSV infection in vivo CD163 is edited so as to remove the viral interaction domain while maintaining protein expression and biological function, averting any potential adverse effect associated with protein knockout. This research demonstrates a genetic-control approach with potential benefits in animal welfare as well as to the pork industry.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Resistencia a la Enfermedad , Proteínas Mutantes/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Depuradores/metabolismo , Receptores Virales/metabolismo , Animales , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Ensayo de Inmunoadsorción Enzimática , Macrófagos/química , Proteínas Mutantes/genética , Receptores de Superficie Celular/genética , Receptores Depuradores/genética , Receptores Virales/genética , Eliminación de Secuencia , Suero/química , Porcinos
7.
PLoS Pathog ; 13(2): e1006206, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28231264

RESUMEN

Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages.


Asunto(s)
Macrófagos/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Receptores de Superficie Celular/deficiencia , Animales , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Western Blotting , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Edición Génica/métodos , Genoma , Genotipo , Macrófagos/inmunología , Macrófagos/metabolismo , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Receptores de Superficie Celular/genética , Porcinos
8.
Nature ; 491(7424): 393-8, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23151582

RESUMEN

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.


Asunto(s)
Genoma/genética , Filogenia , Sus scrofa/clasificación , Sus scrofa/genética , Animales , Demografía , Modelos Animales , Datos de Secuencia Molecular , Dinámica Poblacional
9.
BMC Genomics ; 18(1): 323, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28438136

RESUMEN

BACKGROUND: Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5'-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences. RESULTS: We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5' cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences. CONCLUSIONS: Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics.


Asunto(s)
Pollos/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Animales , Genómica , Humanos , Anotación de Secuencia Molecular , Especificidad de Órganos , Filogenia , Sitios de Empalme de ARN/genética , Especificidad de la Especie
10.
Arch Virol ; 162(8): 2203-2210, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28361286

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major infectious threat to the pig industry worldwide. Increasing evidence suggests that microevolution within a quasispecies population can give rise to high sequence heterogeneity in PRRSV; potentially impacting the pathogenicity of the virus. Here, we report on micro-evolutionary events taking place within the viral quasispecies population in lung and lymph node 3 days post infection (dpi) following experimental in vivo infection with the prototypical Lelystad PRRSV (LV). Sequence analysis revealed 16 high frequency single nucleotide variants (SNV) or differences from the reference LV genome which are assumed to be representative of the consensus inoculum genome. Additionally, 49 other low frequency SNVs were also found in the inoculum population. At 3 dpi, a total of 9 and 10 SNVs of varying frequencies could already be detected in the LV population infecting the lung and lymph nodes, respectively. Interestingly, of these, three and four novel SNVs emerged independently in the two respective tissues when compared to the inoculum. The remaining variants, though already present at lower frequencies in the inoculum, were positively selected and their frequency increased within the quasispecies population. Hence, we were able to determine directly from tissues infected with PRRSV the repertoire of genetic variants within the viral quasispecies population. Our data also suggest that microevolution of these variants is rapid and some may be tissue-specific.


Asunto(s)
Evolución Molecular , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos/virología , Animales , Variación Genética , Genotipo , Pulmón/virología , Ganglios Linfáticos/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación
12.
Vet Res ; 47(1): 104, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27765052

RESUMEN

Little is known about the host factor in the response to PRRSV vaccination. For this purpose, piglets were immunized with a commercial PRRSV-live vaccine and classified as high responders (HR) or low responders (LR) as regards to the frequencies of virus-specific IFN-γ-secreting cells. Six weeks post vaccination, PBMCs isolated from three individuals with the most extreme responses in each HR and LR groups and 3 unvaccinated controls, were either stimulated with phytohaemagglutinin, challenged with the vaccine or mock treated for 24 h, prior conducting transcriptional studies, gene ontology and pathway analyses. The LR group had very low neutralizing antibody levels and showed a higher number of down-regulated transcripts compared with the HR group (FDR < 0.2, P < 0.001). Down-regulated genes encoded chemoattractants, proinflammatory cytokines and the interferon-inducible GBP family, and showed enrichment in wounding (FDR < 3.6E-13), inflammation (FDR < 8E-12), defence (FDR < 8.7E-09) and immunity (FDR < 7.6E-08), suggesting immune response impairment. In the HR group, down-regulated genes were involved in protein transport (FDR < 4.77E-03), locomotory behavior (FDR < 5.47E-3), regulation of protein localization (FDR < 1.02E-02), and regulation of TNF superfamily member 15 and miR181. In contrast, the HR group presented up-regulated transcripts associated with wounding (FDR < 4.95). Moreover, IFN-γ was predicted to be an inhibited upstream regulator since IFN-γ pathways were associated with higher number of down-regulated genes in the LR (n = 40) than the HR (n = 10). Divergent responses to PRRSV-vaccination may be the result of the genetic background of the host.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Ensayos de Liberación de Interferón gamma/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Virales/farmacología , Animales , Inmunidad Humoral/inmunología , Leucocitos Mononucleares/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Porcinos , Vacunas Virales/inmunología
13.
Genet Sel Evol ; 48: 11, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26856324

RESUMEN

BACKGROUND: Improving meat quality including taste and tenderness is critical to the protection and development of markets for sheep meat. Phenotypic selection for such measures of meat quality is constrained by the fact that these parameters can only be measured post-slaughter. Carcass composition has an impact on meat quality and can be measured on live animals using advanced imaging technologies such as X-ray computed tomography (CT). Since carcass composition traits are heritable, they are potentially amenable to improvement through marker-assisted and genomic selection. We conducted a genome-wide association study (GWAS) on about 600 Scottish Blackface lambs for which detailed carcass composition phenotypes, including bone, fat and muscle components, had been captured using CT and which were genotyped for ~40,000 single nucleotide polymorphisms (SNPs) using the Illumina OvineSNP50 chip. RESULTS: We confirmed that the carcass composition traits were heritable with moderate to high (0.19-0.78) heritabilities. The GWAS analyses revealed multiple SNPs and quantitative trait loci (QTL) that were associated with effects on carcass composition traits and were significant at the genome-wide level. In particular, we identified a region on ovine chromosome 6 (OAR6) associated with bone weight and bone area that harboured SNPs with p values of 5.55 × 10(-8) and 2.63 × 10(-9), respectively. The same region had effects on fat area, fat density, fat weight and muscle density. We identified plausible positional candidate genes for these OAR6 QTL. We also detected a SNP that reached the genome-wide significance threshold with a p value of 7.28 × 10(-7) and was associated with muscle density on OAR1. Using a regional heritability mapping approach, we also detected regions on OAR3 and 24 that reached genome-wide significance for bone density. CONCLUSIONS: We identified QTL on OAR1, 3, 24 and particularly on OAR6 that are associated with effects on muscle, fat and bone traits. Based on available evidence that indicates that these traits are genetically correlated with meat quality traits, these associated SNPs have potential applications in selective breeding for improved meat quality. Further research is required to determine whether the effects associated with the OAR6 QTL are caused by a single gene or several closely-linked genes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Carne Roja , Oveja Doméstica/genética , Animales , Composición Corporal/genética , Peso Corporal/genética , Mapeo Cromosómico , Femenino , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Tomografía
14.
PLoS Genet ; 9(4): e1003453, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637623

RESUMEN

Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition.


Asunto(s)
Cruzamiento , Sus scrofa , Animales , Genoma , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Sus scrofa/genética , Porcinos
15.
BMC Genomics ; 16: 970, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26582032

RESUMEN

BACKGROUND: The FANTOM5 consortium used Cap Analysis of Gene Expression (CAGE) tag sequencing to produce a comprehensive atlas of promoters and enhancers within the human and mouse genomes. We reasoned that the mapping of these regulatory elements to the pig genome could provide useful annotation and evidence to support assignment of orthology. RESULTS: For human transcription start sites (TSS) associated with annotated human-mouse orthologs, 17% mapped to the pig genome but not to the mouse, 10% mapped only to the mouse, and 55% mapped to both pig and mouse. Around 17% did not map to either species. The mapping percentages were lower where there was not clear orthology relationship, but in every case, mapping to pig was greater than to mouse, and the degree of homology was also greater. Combined mapping of mouse and human CAGE-defined promoters identified at least one putative conserved TSS for >16,000 protein-coding genes. About 54% of the predicted locations of regulatory elements in the pig genome were supported by CAGE and/or RNA-Seq analysis from pig macrophages. CONCLUSIONS: Comparative mapping of promoters and enhancers from humans and mice can provide useful preliminary annotation of other animal genomes. The data also confirm extensive gain and loss of regulatory elements between species, and the likelihood that pigs provide a better model than mice for human gene regulation and function.


Asunto(s)
Secuencia Conservada/genética , Genómica , Macrófagos/metabolismo , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Porcinos , Transcriptoma , Animales , Mapeo Cromosómico , Humanos , Ratones , Homología de Secuencia de Ácido Nucleico
16.
J Immunol ; 190(12): 6389-96, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23667115

RESUMEN

Human and mouse monocyte can be divided into two different subpopulations based on surface marker expression: CD14/16 and Ly6C/CX3CR1, respectively. Monocyte subpopulations in the pig were identified based on reciprocal expression of CD14 and the scavenger receptor CD163. The two populations, CD14(hi)-CD163(low) and CD14(low)-CD163(hi), show approximately equal abundance in the steady-state. Culture of pig PBMCs in CSF1 indicates that the two populations are a maturation series controlled by this growth factor. Gene expression in pig monocyte subpopulations was profiled using the newly developed and annotated pig whole genome snowball microarray. Previous studies have suggested a functional equivalence between human and mouse subsets, but certain genes such as CD36, CLEC4E, or TREM-1 showed human-specific expression. The same genes were expressed selectively in pig monocyte subsets. However, the profiles suggest that the pig CD14(low)-CD163(high) cells are actually equivalent to intermediate human monocytes, and there is no CD14(-) CD16(+) "nonclassical" population. The results are discussed in terms of the relevance of the pig as a model for understanding human monocyte function.


Asunto(s)
Monocitos/citología , Monocitos/inmunología , Sus scrofa/inmunología , Animales , Citometría de Flujo , Humanos , Inmunofenotipificación , Monocitos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Porcinos , Transcriptoma
17.
Proc Natl Acad Sci U S A ; 109(48): 19529-36, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23151514

RESUMEN

Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig--the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.


Asunto(s)
Animales Domésticos/genética , Genoma , Selección Genética , Porcinos/genética , Secuencia de Aminoácidos , Animales , Variaciones en el Número de Copia de ADN , Homocigoto , Datos de Secuencia Molecular , Sitios de Carácter Cuantitativo , Homología de Secuencia de Aminoácido
18.
BMC Genomics ; 15: 424, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24894739

RESUMEN

BACKGROUND: Boar taint is an offensive urine or faecal-like odour, affecting the smell and taste of cooked pork from some mature non-castrated male pigs. Androstenone and skatole in fat are the molecules responsible. In most pig production systems, males, which are not required for breeding, are castrated shortly after birth to reduce the risk of boar taint. There is evidence for genetic variation in the predisposition to boar taint.A genome-wide association study (GWAS) was performed to identify loci with effects on boar taint. Five hundred Danish Landrace boars with high levels of skatole in fat (>0.3 µg/g), were each matched with a litter mate with low levels of skatole and measured for androstenone. DNA from these 1,000 non-castrated boars was genotyped using the Illumina PorcineSNP60 Beadchip. After quality control, tests for SNPs associated with boar taint were performed on 938 phenotyped individuals and 44,648 SNPs. Empirical significance thresholds were set by permutation (100,000). For androstenone, a 'regional heritability approach' combining information from multiple SNPs was used to estimate the genetic variation attributable to individual autosomes. RESULTS: A highly significant association was found between variation in skatole levels and SNPs within the CYP2E1 gene on chromosome 14 (SSC14), which encodes an enzyme involved in degradation of skatole. Nominal significance was found for effects on skatole associated with 4 other SNPs including a region of SSC6 reported previously. Genome-wide significance was found for an association between SNPs on SSC5 and androstenone levels and nominal significance for associations with SNPs on SSC13 and SSC17. The regional analyses confirmed large effects on SSC5 for androstenone and suggest that SSC5 explains 23% of the genetic variation in androstenone. The autosomal heritability analyses also suggest that there is a large effect associated with androstenone on SSC2, not detected using GWAS. CONCLUSIONS: Significant SNP associations were found for skatole on SSC14 and for androstenone on SSC5 in Landrace pigs. The study agrees with evidence that the CYP2E1 gene has effects on skatole breakdown in the liver. Autosomal heritability estimates can uncover clusters of smaller genetic effects that individually do not exceed the threshold for GWAS significance.


Asunto(s)
Citocromo P-450 CYP2E1/genética , Cuerpo Adiposo/química , Carne/análisis , Odorantes/análisis , Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Androstenos/metabolismo , Animales , Cromosomas de los Mamíferos , Citocromo P-450 CYP2E1/metabolismo , Variación Genética , Estudio de Asociación del Genoma Completo , Masculino , Orquiectomía , Fenotipo , Escatol/metabolismo
19.
BMC Genomics ; 15: 550, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24988888

RESUMEN

BACKGROUND: The domestic pig (Sus scrofa) is both an important livestock species and a model for biomedical research. Exome sequencing has accelerated identification of protein-coding variants underlying phenotypic traits in human and mouse. We aimed to develop and validate a similar resource for the pig. RESULTS: We developed probe sets to capture pig exonic sequences based upon the current Ensembl pig gene annotation supplemented with mapped expressed sequence tags (ESTs) and demonstrated proof-of-principle capture and sequencing of the pig exome in 96 pigs, encompassing 24 capture experiments. For most of the samples at least 10x sequence coverage was achieved for more than 90% of the target bases. Bioinformatic analysis of the data revealed over 236,000 high confidence predicted SNPs and over 28,000 predicted indels. CONCLUSIONS: We have achieved coverage statistics similar to those seen with commercially available human and mouse exome kits. Exome capture in pigs provides a tool to identify coding region variation associated with production traits, including loss of function mutations which may explain embryonic and neonatal losses, and to improve genomic assemblies in the vicinity of protein coding genes in the pig.


Asunto(s)
Exoma , Análisis de Secuencia de ADN , Sus scrofa/genética , Sustitución de Aminoácidos , Animales , Etiquetas de Secuencia Expresada , Haplotipos , Factor II del Crecimiento Similar a la Insulina/genética , Anotación de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Sus scrofa/metabolismo
20.
BMC Genomics ; 15: 90, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24524230

RESUMEN

BACKGROUND: Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. RESULTS: SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. CONCLUSIONS: This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture breeding programs via genomic selection.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Salmo salar/genética , Alelos , Animales , Análisis por Conglomerados , Mapeo Contig , Frecuencia de los Genes , Biblioteca de Genes , Ligamiento Genético , Genotipo , Haploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA