Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 113998, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551960

RESUMEN

RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.


Asunto(s)
Endorribonucleasas , Inmunidad Innata , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Humanos , Nucleótidos de Adenina/metabolismo , Oligorribonucleótidos/metabolismo , Animales , Estrés Fisiológico , Transcriptoma/genética , ARN Bicatenario/metabolismo
2.
Cell Death Dis ; 14(7): 467, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495584

RESUMEN

Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.


Asunto(s)
Óxido Nítrico , Ribosomas , Humanos , Óxido Nítrico/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ubiquitinación , Proteínas Portadoras/metabolismo
3.
Science ; 382(6675): eadf3208, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38060659

RESUMEN

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Asunto(s)
Envejecimiento , MAP Quinasa Quinasa Quinasa 3 , Obesidad , Especies Reactivas de Oxígeno , Ribosomas , Estrés Fisiológico , Animales , Ratones , Envejecimiento/metabolismo , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Obesidad/metabolismo , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ribosomas/metabolismo , Pez Cebra , Ratones Noqueados
4.
Endocr Connect ; 7(1): 149-158, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29305399

RESUMEN

Concern has been raised over chemical-induced disruption of ovary development during fetal life resulting in long-lasting consequences only manifesting themselves much later during adulthood. A growing body of evidence suggests that prenatal exposure to the mild analgesic acetaminophen/paracetamol can cause such a scenario. Therefore, in this review, we discuss three recent reports that collectively indicate that prenatal exposure in a period of 13.5 days post coitum in both rats and mouse can result in reduced female reproductive health. The combined data show that the exposure results in the reduction of primordial follicles, irregular menstrual cycle, premature absence of corpus luteum, as well as reduced fertility, resembling premature ovarian insufficiency syndrome in humans that is linked to premature menopause. This could especially affect the Western parts of the world, where the age for childbirth is continuously being increased and acetaminophen is recommended during pregnancy for pain and fever. We therefore highlight an urgent need for more studies to verify these data including both experimental and epidemiological approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA