Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963056

RESUMEN

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Asunto(s)
Censos , Neoplasias/genética , Neoplasias/inmunología , Transcriptoma/genética , Microambiente Tumoral/inmunología , Biomarcadores de Tumor , Análisis por Conglomerados , Estudios de Cohortes , Biología Computacional/métodos , Citometría de Flujo/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/clasificación , Neoplasias/patología , RNA-Seq/métodos , San Francisco , Universidades
2.
Nat Immunol ; 22(2): 179-192, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462452

RESUMEN

Metabolic programming controls immune cell lineages and functions, but little is known about γδ T cell metabolism. Here, we found that γδ T cell subsets making either interferon-γ (IFN-γ) or interleukin (IL)-17 have intrinsically distinct metabolic requirements. Whereas IFN-γ+ γδ T cells were almost exclusively dependent on glycolysis, IL-17+ γδ T cells strongly engaged oxidative metabolism, with increased mitochondrial mass and activity. These distinct metabolic signatures were surprisingly imprinted early during thymic development and were stably maintained in the periphery and within tumors. Moreover, pro-tumoral IL-17+ γδ T cells selectively showed high lipid uptake and intracellular lipid storage and were expanded in obesity and in tumors of obese mice. Conversely, glucose supplementation enhanced the antitumor functions of IFN-γ+ γδ T cells and reduced tumor growth upon adoptive transfer. These findings have important implications for the differentiation of effector γδ T cells and their manipulation in cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias del Colon/metabolismo , Metabolismo Energético , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/metabolismo , Timo/metabolismo , Microambiente Tumoral , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Linaje de la Célula , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Metabolismo de los Lípidos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Técnicas de Cultivo de Órganos , Fenotipo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/trasplante , Timo/inmunología , Carga Tumoral
3.
Immunity ; 57(1): 86-105.e9, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159572

RESUMEN

Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético , Microglía/metabolismo , Neuronas/metabolismo , Animales , Ratones
4.
Proc Natl Acad Sci U S A ; 120(39): e2302500120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722050

RESUMEN

To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR). The LiTE system constitutes a reversible molecular switch displaying exquisite reactivity. As proof of concept, we dissect how specific temporal patterns of TCR stimulation shape T cell activation. We established that CD4+ T cells respond to intermittent TCR stimulation more efficiently than their CD8+ T cells counterparts and provide evidence that distinct sequences of TCR stimulation encode different cytokine programs. Finally, we show that the LiTE system could be exploited to create light-activated bispecific T cell engagers and manipulate tumor cell killing. Overall, the LiTE system provides opportunities to understand how T cells integrate TCR stimulations and to trigger T cell cytotoxicity with high spatiotemporal control.


Asunto(s)
Células Presentadoras de Antígenos , Linfocitos T CD8-positivos , Citocinas , Células Epiteliales , Activación de Linfocitos
5.
Blood ; 142(9): 827-845, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37249233

RESUMEN

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Asunto(s)
Factores de Transcripción NFATC , Linfocitos T , Humanos , Ratones , Animales , Linfocitos T/metabolismo , Factores de Transcripción NFATC/metabolismo , Linfocitos T CD8-positivos , Glucólisis/genética , Mutación
6.
Am J Physiol Endocrinol Metab ; 326(3): E215-E225, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117266

RESUMEN

Immunometabolism research is uncovering the relationship between metabolic features and immune cell functions in physiological and pathological conditions. Normal pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus with immune homeostasis maintenance. Here, we determined the immunometabolic status of monocytes of pregnant women compared with nonpregnant controls and its impact on monocyte anti-inflammatory functions such as efferocytosis. Monocytes from pregnant women (16-20 wk) and nonpregnant age-matched controls were studied. Single cell-based metabolic assays using freshly isolated monocytes from both groups were carried out in parallel with functional assays ex vivo to evaluate monocyte efferocytic capacity. On the other hand, various in vitro metabolic assays with human monocytes or monocyte-derived macrophages were designed to explore the effect of trophoblast cells in the profiles observed. We found that pregnancy alters monocyte metabolism and function. An increased glucose dependency and enhanced efferocytosis were detected in monocytes from pregnant women at resting states, compared with nonpregnant controls. Furthermore, monocytes display a reduced glycolytic response when stimulated with lipopolysaccharide (LPS). The metabolic profiling of monocytes at this stage of pregnancy was comparable with the immunometabolic phenotypes of human monocytes treated in vitro with human first trimester trophoblast cell conditioned media. These findings suggest that immunometabolic mechanisms are involved in the functional shaping of monocytes during pregnancy with a contribution of trophoblast cells. Results provide new clues for future hypotheses regarding pregnancies complicated by metabolic disorders.NEW & NOTEWORTHY Immunometabolism stands as a novel perspective to understand the complex regulation of the immune response and to provide small molecule-based therapies. By applying this approach to study monocytes during pregnancy, we found that these cells have a unique activation pattern. They rely more on glycolysis and show increased efferocytosis/IL-10 production, but they do not have the typical proinflammatory responses. We also present evidence that trophoblast cells can shape monocytes into this distinct immunometabolic profile.


Asunto(s)
Monocitos , Trofoblastos , Embarazo , Humanos , Femenino , Monocitos/metabolismo , Trofoblastos/metabolismo , Macrófagos/metabolismo , Primer Trimestre del Embarazo
7.
Proc Natl Acad Sci U S A ; 116(45): 22721-22729, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31636192

RESUMEN

Exposure to microbe-associated molecular patterns (MAMPs) causes dendritic cells (DCs) to undergo a remarkable activation process characterized by changes in key biochemical mechanisms. These enhance antigen processing and presentation, as well as strengthen DC capacity to stimulate naïve T cell proliferation. Here, we show that in response to the MAMPS lipopolysaccharide and polyriboinosinic:polyribocytidylic acid (Poly I:C), RNA polymerase III (Pol lII)-dependent transcription and consequently tRNA gene expression are strongly induced in DCs. This is in part caused by the phosphorylation and nuclear export of MAF1 homolog negative regulator of Poll III (MAF1), via a synergistic casein kinase 2 (CK2)- and mammalian target of rapamycin-dependent signaling cascade downstream of Toll-like receptors (TLRs). De novo tRNA expression is necessary to augment protein synthesis and compensate for tRNA degradation driven by TLR-dependent DC exposure to type-I IFN. Although protein synthesis is not strongly inhibited in absence of RNA Pol III activity, it compromises the translation of key DC mRNAs, like those coding for costimulatory molecules and proinflammatory cytokines, which instead can be stored in stress granules, as shown for CD86 mRNA. TLR-dependent CK2 stimulation and subsequent RNA Pol III activation are therefore key for the acquisition by DCs of their unique T cell immune-stimulatory functions.


Asunto(s)
Células Dendríticas/inmunología , ARN Polimerasa III/genética , Linfocitos T/inmunología , Transcripción Genética , Animales , Quinasa de la Caseína II/metabolismo , Células Cultivadas , Activación Enzimática , Femenino , Ratones , Fosforilación , ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
8.
EMBO J ; 36(6): 761-782, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28100675

RESUMEN

In innate immune responses, induction of type-I interferons (IFNs) prevents virus spreading while viral replication is delayed by protein synthesis inhibition. We asked how cells perform these apparently contradictory activities. Using single fibroblast monitoring by flow cytometry and mathematical modeling, we demonstrate that type-I IFN production is linked to cell's ability to enter dsRNA-activated PKR-dependent translational arrest and then overcome this inhibition by decreasing eIF2α phosphorylation through phosphatase 1c cofactor GADD34 (Ppp1r15a) expression. GADD34 expression, shown here to be dependent on the IRF3 transcription factor, is responsible for a biochemical cycle permitting pulse of IFN synthesis to occur in cells undergoing protein synthesis inhibition. Translation arrest is further demonstrated to be key for anti-viral response by acting synergistically with MAVS activation to amplify TBK1 signaling and IFN-ß mRNA transcription, while GADD34-dependent protein synthesis recovery contributes to the heterogeneous expression of IFN observed in dsRNA-activated cells.


Asunto(s)
Regulación de la Expresión Génica , Interferón beta/metabolismo , Biosíntesis de Proteínas , Proteína Fosfatasa 1/metabolismo , ARN Bicatenario/inmunología , ARN Bicatenario/metabolismo , Animales , Células Cultivadas , Fibroblastos/inmunología , Fibroblastos/virología , Citometría de Flujo , Perfilación de la Expresión Génica , Inmunidad Innata , Ratones , Modelos Teóricos
9.
J Cell Sci ; 131(10)2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29700204

RESUMEN

The rate at which ribosomes translate mRNAs regulates protein expression by controlling co-translational protein folding and mRNA stability. Many factors regulate translation elongation, including tRNA levels, codon usage and phosphorylation of eukaryotic elongation factor 2 (eEF2). Current methods to measure translation elongation lack single-cell resolution, require expression of multiple transgenes and have never been successfully applied ex vivo Here, we show, by using a combination of puromycilation detection and flow cytometry (a method we call 'SunRiSE'), that translation elongation can be measured accurately in primary cells in pure or heterogenous populations isolated from blood or tissues. This method allows for the simultaneous monitoring of multiple parameters, such as mTOR or S6K1/2 signaling activity, the cell cycle stage and phosphorylation of translation factors in single cells, without elaborated, costly and lengthy purification procedures. We took advantage of SunRiSE to demonstrate that, in mouse embryonic fibroblasts, eEF2 phosphorylation by eEF2 kinase (eEF2K) mostly affects translation engagement, but has a surprisingly small effect on elongation, except after proteotoxic stress induction.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Fibroblastos/citología , Citometría de Flujo/métodos , Extensión de la Cadena Peptídica de Translación , Análisis de la Célula Individual/métodos , Animales , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
10.
Immunol Rev ; 272(1): 28-38, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27319340

RESUMEN

Antigenic peptides presented in the context of major histocompatibility complex (MHC) molecules originate from the degradation of both self and non-self proteins. T cells can therefore recognize at the surface of surveyed cells, the self-peptidome produced by the cell itself (mostly inducing tolerance) or immunogenic peptides derived from exogenous origins. The initiation of adaptive immune responses by dendritic cells (DCs), through the antigenic priming of naïve T cells, is associated to microbial pattern recognition receptors engagement. Activation of DCs by microbial product or inflammatory cytokines initiates multiple processes that maximize DC capacity to present exogenous antigens and stimulate T cells by affecting major metabolic and membrane traffic pathways. These include the modulation of protein synthesis, the regulation of MHC and co-stimulatory molecules transport, as well as the regulation of autophagy, that, all together promote exogenous antigen presentation while limiting the display of self-antigens by MHC molecules.


Asunto(s)
Presentación de Antígeno , Autofagia , Células Dendríticas/inmunología , Biosíntesis de Proteínas , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Autoantígenos/metabolismo , Diferenciación Celular , Antígenos de Histocompatibilidad/metabolismo , Humanos , Inmunomodulación , Péptidos/metabolismo , Autotolerancia
12.
Biochemistry ; 56(31): 4029-4038, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28703578

RESUMEN

Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.


Asunto(s)
Adenosina Desaminasa/metabolismo , Modelos Biológicos , Polimorfismo de Longitud del Fragmento de Restricción , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Treonina/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Emparejamiento Base , Biología Computacional , Desaminación , Sistemas Especialistas , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Inosina/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN de Transferencia de Alanina/antagonistas & inhibidores , ARN de Transferencia de Treonina/antagonistas & inhibidores , ARN de Transferencia de Valina/antagonistas & inhibidores , ARN de Transferencia de Valina/metabolismo , Transcripción Reversa , Especificidad por Sustrato
13.
Methods Mol Biol ; 2713: 363-376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37639136

RESUMEN

Functional reprograming of cells is linked to a process of metabolic rewiring that is adapted for such new functions or microenvironment. Macrophages are present in all tissues and exposed to different microenvironments throughout our body. Profiling energetic metabolism of tissue resident and other heterogeneous populations of macrophages in vitro and ex vivo is technologically very challenging. We have recently developed a method to functionally profile energetic metabolism with single-cell resolution, named SCENITH. This method can be performed rapidly ex vivo and does not require specialized equipment. In this book chapter, we will summarize the tissue processing, the procedure and methods, the analysis and example of results, and a series of frequently asked questions.


Asunto(s)
Reprogramación Celular , Macrófagos , Macrófagos/metabolismo
14.
Front Immunol ; 15: 1361139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482017

RESUMEN

Resident epidermal T cells of murine skin, called dendritic epidermal T cells (DETCs), express an invariant γδ TCR that recognizes an unidentified self-ligand expressed on epidermal keratinocytes. Although their fetal thymic precursors are preprogrammed to produce IFN-γ, DETCs in the adult epidermis rapidly produce IL-13 but not IFN-γ early after activation. Here, we show that preprogrammed IFN-γ-producing DETC precursors differentiate into rapid IL-13 producers in the perinatal epidermis. The addition of various inhibitors of signaling pathways downstream of TCR to the in vitro differentiation model of neonatal DETCs revealed that TCR signaling through the p38 MAPK pathway is essential for the functional differentiation of neonatal DETCs. Constitutive TCR signaling at steady state was also shown to be needed for the maintenance of the rapid IL-13-producing capacity of adult DETCs because in vivo treatment with the p38 MAPK inhibitor decreased adult DETCs with the rapid IL-13-producing capacity. Adult DETCs under steady-state conditions had lower glycolytic capacity than proliferating neonatal DETCs. TCR stimulation of adult DETCs induced high glycolytic capacity and IFN-γ production during the late phase of activation. Inhibition of glycolysis decreased IFN-γ but not IL-13 production by adult DETCs during the late phase of activation. These results demonstrate that TCR signaling promotes the differentiation of IL-13-producing DETCs in the perinatal epidermis and is needed for maintaining the rapid IL-13-producing capacity of adult DETCs. The low glycolytic capacity of adult DETCs at steady state also regulates the rapid IL-13 response and delayed IFN-γ production after activation.


Asunto(s)
Epidermis , Linfocitos T , Animales , Ratones , Linfocitos T/metabolismo , Epidermis/metabolismo , Interleucina-13/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Nat Commun ; 15(1): 6976, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143070

RESUMEN

Regulatory T cells (Treg) are critical players of immune tolerance that develop in the thymus via two distinct developmental pathways involving CD25+Foxp3- and CD25-Foxp3lo precursors. However, the mechanisms regulating the recently identified Foxp3lo precursor pathway remain unclear. Here, we find that the membrane-bound lymphotoxin α1ß2 (LTα1ß2) heterocomplex is upregulated during Treg development upon TCR/CD28 and IL-2 stimulation. We show that Lta expression limits the maturational development of Treg from Foxp3lo precursors by regulating their proliferation, survival, and metabolic profile. Transgenic reporter mice and transcriptomic analyses further reveal that medullary thymic epithelial cells (mTEC) constitute an unexpected source of IL-4. We demonstrate that LTα1ß2-lymphotoxin ß receptor-mediated interactions with mTEC limit Treg development by down-regulating IL-4 expression in mTEC. Collectively, our findings identify the lymphotoxin axis as the first inhibitory checkpoint of thymic Treg development that fine-tunes the Foxp3lo Treg precursor pathway by limiting IL-4 availability.


Asunto(s)
Factores de Transcripción Forkhead , Interleucina-4 , Receptor beta de Linfotoxina , Linfotoxina-alfa , Transducción de Señal , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Interleucina-4/metabolismo , Ratones , Linfotoxina-alfa/metabolismo , Linfotoxina-alfa/genética , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Timo/inmunología , Timo/citología , Timo/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular , Ratones Transgénicos , Interleucina-2/metabolismo , Proliferación Celular , Heterotrímero de Linfotoxina alfa1 y beta2/metabolismo , Heterotrímero de Linfotoxina alfa1 y beta2/genética
16.
Nat Commun ; 15(1): 2569, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519473

RESUMEN

The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.


Asunto(s)
Linfocitos B , Mitocondrias , Ratones , Animales , Mitocondrias/genética , Centro Germinal , Ratones Noqueados , Activación de Linfocitos
17.
Cell Death Discov ; 10(1): 292, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897995

RESUMEN

Cancer metabolic reprogramming has been recognized as one of the cancer hallmarks that promote cell proliferation, survival, as well as therapeutic resistance. Up-to-date regulation of metabolism in T-cell lymphoma is poorly understood. In particular, for human angioimmunoblastic T-cell lymphoma (AITL) the metabolic profile is not known. Metabolic intervention could help identify new treatment options for this cancer with very poor outcomes and no effective medication. Transcriptomic analysis of AITL tumor cells, identified that these cells use preferentially mitochondrial metabolism. By using our preclinical AITL mouse model, mimicking closely human AITL features, we confirmed that T follicular helper (Tfh) tumor cells exhibit a strong enrichment of mitochondrial metabolic signatures. Consistent with these results, disruption of mitochondrial metabolism using metformin or a mitochondrial complex I inhibitor such as IACS improved the survival of AITL lymphoma-bearing mice. Additionally, we confirmed a selective elimination of the malignant human AITL T cells in patient biopsies upon mitochondrial respiration inhibition. Moreover, we confirmed that diabetic patients suffering from T-cell lymphoma, treated with metformin survived longer as compared to patients receiving alternative treatments. Taking together, our findings suggest that targeting the mitochondrial metabolic pathway could be a clinically efficient approach to inhibit aggressive cancers such as peripheral T-cell lymphoma.

18.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189779

RESUMEN

The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.


Asunto(s)
Linfocitos T CD4-Positivos , Sistema Nervioso Central , Proteínas de Dominio T Box , Humanos , Muerte Celular , Inflamación , Mitocondrias , Proteínas de Dominio T Box/genética
19.
Mucosal Immunol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844208

RESUMEN

Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.

20.
Elife ; 122024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922679

RESUMEN

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.


Asunto(s)
Movimiento Celular , Células Dendríticas , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Monocitos , Mycobacterium tuberculosis , Tuberculosis , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mycobacterium tuberculosis/inmunología , Animales , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología , Ratones , Receptor Toll-Like 2/metabolismo , Ratones Endogámicos C57BL , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA