Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473253

RESUMEN

The STAT3 transcription factor, acting both in the nucleus and mitochondria, maintains embryonic stem cell pluripotency and promotes their proliferation. In this work, using zebrafish, we determined in vivo that mitochondrial STAT3 regulates mtDNA transcription in embryonic and larval stem cell niches and that this activity affects their proliferation rates. As a result, we demonstrated that import of STAT3 inside mitochondria requires Y705 phosphorylation by Jak, whereas its mitochondrial transcriptional activity, as well as its effect on proliferation, depends on the MAPK target S727. These data were confirmed using mouse embryonic stem cells: although the Y705-mutated STAT3 cannot enter mitochondria, the S727 mutation does not affect import into the organelle and is responsible for STAT3-dependent mitochondrial transcription. Surprisingly, STAT3-dependent increase of mitochondrial transcription appears to be independent from STAT3 binding to STAT3-responsive elements. Finally, loss-of-function experiments, with chemical inhibition of the JAK/STAT3 pathway or genetic ablation of stat3 gene, demonstrated that STAT3 is also required for cell proliferation in the intestine of zebrafish.


Asunto(s)
Proliferación Celular , Células Madre Embrionarias/citología , Mitocondrias/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Sistema Nervioso Central/embriología , ADN Mitocondrial/metabolismo , Embrión no Mamífero , Células Madre Embrionarias/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Intestinos/embriología , Quinasas Janus/metabolismo , Mutación , Fosforilación , Factor de Transcripción STAT3/genética , Transducción de Señal , Transcripción Genética , Activación Transcripcional , Pez Cebra , Proteínas de Pez Cebra/genética
2.
Cell ; 136(1): 123-35, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135894

RESUMEN

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Asunto(s)
Proteína Smad4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Xenopus
4.
Development ; 147(6)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179574

RESUMEN

Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, have remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Tipificación del Cuerpo/genética , Habénula/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteínas Represoras/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular/genética , Linaje de la Célula/genética , Dominancia Cerebral/genética , Embrión no Mamífero , Habénula/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Development ; 147(12)2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32467235

RESUMEN

The transcription factor Stat3 is required for proliferation and pluripotency of embryonic stem cells; we have prepared and characterized fluorescent Stat3-reporter zebrafish based on repeats of minimal responsive elements. These transgenic lines mimic in vivo Stat3 expression patterns and are responsive to exogenous Stat3; notably, fluorescence is inhibited by both stat3 knockout and IL6/Jak/STAT inhibitors. At larval stages, Stat3 reporter activity correlates with proliferating regions of the brain, haematopoietic tissue and intestine. In the adult gut, the reporter is active in sparse proliferating cells, located at the base of intestinal folds, expressing the stemness marker sox9b and having the morphology of mammalian crypt base columnar cells; noteworthy, zebrafish stat3 mutants show defects in intestinal folding. Stat3 reporter activity in the gut is abolished with mutation of T cell factor 4 (Tcf7l2), the intestinal mediator of Wnt/ß-catenin-dependent transcription. The Wnt/ß-catenin dependence of Stat3 activity in the gut is confirmed by abrupt expansion of Stat3-positive cells in intestinal adenomas of apc heterozygotes. Our findings indicate that Jak/Stat3 signalling is needed for intestinal stem cell maintenance and possibly crucial in controlling Wnt/ß-catenin-dependent colorectal cancer cell proliferation.


Asunto(s)
Mucosa Intestinal/metabolismo , Factor de Transcripción STAT3/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Intestinos/crecimiento & desarrollo , Intestinos/fisiología , Janus Quinasa 1 , Larva/crecimiento & desarrollo , Larva/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Proteína 2 Similar al Factor de Transcripción 7/deficiencia , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
6.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175941

RESUMEN

A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratones , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , Proliferación Celular , Serina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628888

RESUMEN

Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and ß-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.


Asunto(s)
Distrofia Muscular de Cinturas , Sarcoglicanopatías , Animales , Degradación Asociada con el Retículo Endoplásmico , Pez Cebra/genética , Evaluación Preclínica de Medicamentos , Larva
8.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269817

RESUMEN

Glucocorticoids mainly exert their biological functions through their cognate receptor, encoded by the nr3c1 gene. Here, we analysed the glucocorticoids mechanism of action taking advantage of the availability of different zebrafish mutant lines for their receptor. The differences in gene expression patterns between the zebrafish gr knock-out and the grs357 mutant line, in which a point mutation prevents binding of the receptor to the hormone-responsive elements, reveal an intricate network of GC-dependent transcription. Particularly, we show that Stat3 transcriptional activity mainly relies on glucocorticoid receptor GR tethering activity: several Stat3 target genes are induced upon glucocorticoid GC exposure both in wild type and in grs357/s357 larvae, but not in gr knock-out zebrafish. To understand the interplay between GC, their receptor, and the mineralocorticoid receptor, which is evolutionarily and structurally related to the GR, we generated an mr knock-out line and observed that several GC-target genes also need a functional mineralocorticoid receptor MR to be correctly transcribed. All in all, zebrafish mutants and transgenic models allow in vivo analysis of GR transcriptional activities and interactions with other transcription factors such as MR and Stat3 in an in-depth and rapid way.


Asunto(s)
Receptores de Mineralocorticoides , Pez Cebra , Animales , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcripción Genética , Pez Cebra/metabolismo
9.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445111

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs-/- larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Fármacos Neuroprotectores/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Ataxia/metabolismo , Ataxia Cerebelosa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Espasticidad Muscular/metabolismo , Mutación/genética , Fenotipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(37): 9948-9953, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851829

RESUMEN

Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src-mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL.


Asunto(s)
Glucocorticoides/farmacología , Glucocorticoides/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Hipoxia de la Célula/fisiología , Humanos , Hipoxia , Ligasas/metabolismo , Hígado/metabolismo , Unión Proteica , Transducción de Señal/fisiología , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Pez Cebra , Enfermedad de von Hippel-Lindau/metabolismo
11.
EMBO Rep ; 18(7): 1065-1076, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28507163

RESUMEN

F-ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F-ATP synthases can also undergo a Ca2+-dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy-conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the "Ca2+-trigger site" of the PTP to the catalytic site of the F-ATP synthase ß subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the ß subunit, which show a selective decrease in Ca2+-ATP hydrolysis, confer resistance to Ca2+-induced, PTP-dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F-ATP synthase to a channel and of its role in cell death.


Asunto(s)
Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Transporte Biológico , Dominio Catalítico , Muerte Celular , Diferenciación Celular , Embrión no Mamífero/citología , Células HeLa , Humanos , Hidrólisis , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , Permeabilidad , Unión Proteica , Conformación Proteica , Pez Cebra/embriología
12.
Biochim Biophys Acta Bioenerg ; 1859(9): 901-908, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29694828

RESUMEN

Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363-369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.


Asunto(s)
Ataxia/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Embrión no Mamífero/metabolismo , Mitocondrias Hepáticas/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Pez Cebra/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacología , Ataxia/patología , Respiración de la Célula , Células Cultivadas , Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedades Mitocondriales/patología , Debilidad Muscular/patología , Ubiquinona/química , Ubiquinona/metabolismo , Ubiquinona/farmacología , Pez Cebra/embriología
13.
Int J Cancer ; 143(7): 1706-1719, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29672841

RESUMEN

Familial aggregation is a significant risk factor for the development of thyroid cancer and familial non-medullary thyroid cancer (FNMTC) accounts for 5-7% of all NMTC. Whole exome sequencing analysis in the family affected by FNMTC with oncocytic features where our group previously identified a predisposing locus on chromosome 19p13.2, revealed a novel heterozygous mutation (c.400G > A, NM_012335; p.Gly134Ser) in exon 5 of MYO1F, mapping to the linkage locus. In the thyroid FRTL-5 cell model stably expressing the mutant MYO1F p.Gly134Ser protein, we observed an altered mitochondrial network, with increased mitochondrial mass and a significant increase in both intracellular and extracellular reactive oxygen species, compared to cells expressing the wild-type (wt) protein or carrying the empty vector. The mutation conferred a significant advantage in colony formation, invasion and anchorage-independent growth. These data were corroborated by in vivo studies in zebrafish, since we demonstrated that the mutant MYO1F p.Gly134Ser, when overexpressed, can induce proliferation in whole vertebrate embryos, compared to the wt one. MYO1F screening in additional 192 FNMTC families identified another variant in exon 7, which leads to exon skipping, and is predicted to alter the ATP-binding domain in MYO1F. Our study identified for the first time a role for MYO1F in NMTC.


Asunto(s)
Proliferación Celular , Embrión no Mamífero/patología , Mitocondrias/patología , Mutación , Miosina Tipo I/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Células Cultivadas , Niño , Cromosomas Humanos Par 19 , Embrión no Mamífero/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Consumo de Oxígeno , Linaje , Conformación Proteica , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Adulto Joven , Pez Cebra
14.
Biochim Biophys Acta ; 1860(6): 1247-55, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26968460

RESUMEN

OBJECTIVES: Deregulation of axonal transport in neurons is emerging as the major cause of many neurodegenerative diseases in human, such as Charcot-Marie-Tooth (CMT) neuropathy. However, little is known about how mitochondria move in vivo and whether cell culture systems truly represent what happens in living animals. Here we describe the generation of a new zebrafish transgenic line that specifically allows to study mitochondrial dynamics in motor neurons and its application to analyse mitochondrial movement in zebrafish models expressing CMT2A causing mutations. METHODS: The Tol2 transposon system was used to generate a transgenic zebrafish line expressing the photoconvertible fluorescent protein Kaede in mitochondria of motor neurons. Mitochondrial shape and movement were monitored by time-lapse confocal live imaging and measured by kymograph analysis. The effects of two well-known CMT causing mutations, L76P and R94Q substitutions in MFN2, were then investigated with the same methods. RESULTS: We generated the transgenic zebrafish Tg(hb9:MTS-Kaede) line with genetically labelled mitochondria in motor neurons. Kaede protein was correctly and stably targeted to mitochondrial matrix while retaining its photoconvertibility, thus qualifying this model for in vivo studies. Expression of the L76P and R94Q mutations reduced mitochondrial movement in axons and altered mitochondrial distribution in distinct ways. CONCLUSIONS AND GENERAL SIGNIFICANCE: These findings confirm previously published data obtained in cell cultures and strengthen the hypothesis of different mechanism of action of the two MFN2 mutations. Considering the number of neurodegenerative diseases associated to mitochondrial dynamics, the Tg(hb9:MTS-Kaede) zebrafish line is a promising model to study in vivo alterations of mitochondrial transport underlying human diseases.


Asunto(s)
Transporte Axonal/fisiología , Mitocondrias/fisiología , Animales , Animales Modificados Genéticamente , Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/fisiología , Dinámicas Mitocondriales , Proteínas Mitocondriales/fisiología , Mutación , Pez Cebra
15.
Hum Mol Genet ; 24(5): 1280-94, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25326392

RESUMEN

Loss of lysosomal glucocerebrosidase (GBA1) function is responsible for several organ defects, including skeletal abnormalities in type 1 Gaucher disease (GD). Enhanced bone resorption by infiltrating macrophages has been proposed to lead to major bone defects. However, while more recent evidences support the hypothesis that osteoblastic bone formation is impaired, a clear pathogenetic mechanism has not been depicted yet. Here, by combining different molecular approaches, we show that Gba1 loss of function in zebrafish is associated with defective canonical Wnt signaling, impaired osteoblast differentiation and reduced bone mineralization. We also provide evidence that increased reactive oxygen species production precedes the Wnt signaling impairment, which can be reversed upon human GBA1 overexpression. Type 1 GD patient fibroblasts similarly exhibit reduced Wnt signaling activity, as a consequence of increased ß-catenin degradation. Our results support a novel model in which a primary defect in canonical Wnt signaling antecedes bone defects in type 1 GD.


Asunto(s)
Enfermedad de Gaucher/genética , Osteogénesis/genética , Estrés Oxidativo , Vía de Señalización Wnt , Pez Cebra/genética , Animales , Apoptosis , Biomarcadores/sangre , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos/metabolismo , Diferenciación Celular , Proliferación Celular , Clonación Molecular , Modelos Animales de Enfermedad , Enfermedad de Gaucher/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Genotipaje , Glucosilceramidasa/genética , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Development ; 141(18): 3529-39, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25183871

RESUMEN

Canonical ß-catenin-dependent Wnt signal transduction is important for several biological phenomena, such as cell fate determination, cell proliferation, stem cell maintenance and anterior-posterior axis formation. The hallmark of canonical Wnt signaling is the translocation of ß-catenin into the nucleus where it activates gene transcription. However, the mechanisms regulating ß-catenin nuclear localization are poorly understood. We show that Simplet/Fam53B (Smp) is required for Wnt signaling by positively regulating ß-catenin nuclear localization. In the zebrafish embryo, the loss of smp blocks the activity of two ß-catenin-dependent reporters and the expression of Wnt target genes, and prevents nuclear accumulation of ß-catenin. Conversely, overexpression of smp increases ß-catenin nuclear localization and transcriptional activity in vitro and in vivo. Expression of mutant Smp proteins lacking either the nuclear localization signal or the ß-catenin interaction domain reveal that the translocation of Smp into the nucleus is essential for ß-catenin nuclear localization and Wnt signaling in vivo. We also provide evidence that mammalian Smp is involved in regulating ß-catenin nuclear localization: the protein colocalizes with ß-catenin-dependent gene expression in mouse intestinal crypts; siRNA knockdown of Smp reduces ß-catenin nuclear localization and transcriptional activity; human SMP mediates ß-catenin transcriptional activity in a dose-dependent manner; and the human SMP protein interacts with human ß-catenin primarily in the nucleus. Thus, our findings identify the evolutionary conserved SMP protein as a regulator of ß-catenin-dependent Wnt signal transduction.


Asunto(s)
Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Western Blotting , Humanos , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Luciferasas , Ratones , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas Wnt/genética
17.
Pharmacol Res ; 125(Pt B): 122-131, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28899790

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle disease of known etiology without effective, or generally applicable therapy. Mitochondria are affected by the disease in animal models but whether mitochondrial dysfunction is part of the pathogenesis in patients remains unclear. We show that primary cultures obtained from muscle biopsies of DMD patients display a decrease of the respiratory reserve, a consequence of inappropriate opening of the permeability transition pore (PTP). Treatment with the cyclophilin inhibitor alisporivir - a cyclosporin A derivative that desensitizes the PTP but does not inhibit calcineurin - largely restored the maximal respiratory capacity without affecting basal oxygen consumption in cells from patients, thus reinstating a normal respiratory reserve. Treatment with alisporivir, but not with cyclosporin A, led to a substantial recovery of respiratory function matching improved muscle ultrastructure and survival of sapje zebrafish, a severe model of DMD where muscle defects are close to those of DMD patients. Alisporivir was generally well tolerated in HCV patients and could be used for the treatment of DMD.


Asunto(s)
Ciclosporina/farmacología , Mitocondrias/efectos de los fármacos , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animales , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Células Musculares/fisiología , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Consumo de Oxígeno/efectos de los fármacos , Pez Cebra
18.
Neurobiol Dis ; 85: 35-48, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476142

RESUMEN

Pantothenate Kinase Associated Neurodegeneration (PKAN) is an autosomal recessive disorder with mutations in the pantothenate kinase 2 gene (PANK2), encoding an essential enzyme for Coenzyme A (CoA) biosynthesis. The molecular connection between defects in this enzyme and the neurodegenerative phenotype observed in PKAN patients is still poorly understood. We exploited the zebrafish model to study the role played by the pank2 gene during embryonic development and get new insight into PKAN pathogenesis. The zebrafish orthologue of hPANK2 lies on chromosome 13, is a maternal gene expressed in all development stages and, in adult animals, is highly abundant in CNS, dorsal aorta and caudal vein. The injection of a splice-inhibiting morpholino induced a clear phenotype with perturbed brain morphology and hydrocephalus; edema was present in the heart region and caudal plexus, where hemorrhages with reduction of blood circulation velocity were detected. We characterized the CNS phenotype by studying the expression pattern of wnt1 and neurog1 neural markers and by use of the Tg(neurod:EGFP/sox10:dsRed) transgenic line. The results evidenced that downregulation of pank2 severely impairs neuronal development, particularly in the anterior part of CNS (telencephalon). Whole-mount in situ hybridization analysis of the endothelial markers cadherin-5 and fli1a, and use of Tg(fli1a:EGFP/gata1a:dsRed) transgenic line, confirmed the essential role of pank2 in the formation of the vascular system. The specificity of the morpholino-induced phenotype was proved by the restoration of a normal development in a high percentage of embryos co-injected with pank2 mRNA. Also, addition of pantethine or CoA, but not of vitamin B5, to pank2 morpholino-injected embryos rescued the phenotype with high efficiency. The zebrafish model indicates the relevance of pank2 activity and CoA homeostasis for normal neuronal development and functioning and provides evidence of an unsuspected role for this enzyme and its product in vascular development.


Asunto(s)
Sistema Cardiovascular/enzimología , Sistema Cardiovascular/crecimiento & desarrollo , Sistema Nervioso/enzimología , Sistema Nervioso/crecimiento & desarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Células COS , Sistema Cardiovascular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Datos de Secuencia Molecular , Sistema Nervioso/patología , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Neurodegeneración Asociada a Pantotenato Quinasa/fisiopatología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Homología de Secuencia de Aminoácido , Pez Cebra
19.
Hum Mol Genet ; 23(20): 5353-63, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24852368

RESUMEN

Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are inherited muscle diseases due to mutations in the genes encoding the extracellular matrix protein collagen (Col) VI. Opening of the cyclosporin A-sensitive mitochondrial permeability transition pore (PTP) is a causative event in disease pathogenesis, and a potential target for therapy. Here, we have tested the effect of N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclophilin inhibitor, in a zebrafish model of ColVI myopathy obtained by deletion of the N-terminal region of the ColVI α1 triple helical domain, a common mutation of UCMD. Treatment with antisense morpholino sequences targeting col6a1 exon 9 at the 1-4 cell stage (within 1 h post fertilization, hpf) caused severe ultrastructural and motor abnormalities as assessed by electron and fluorescence microscopy, birefringence, spontaneous coiling events and touch-evoked responses measured at 24-48 hpf. Structural and functional abnormalities were largely prevented when NIM811--which proved significantly more effective than cyclosporin A--was administered at 21 hpf, while FK506 was ineffective. Beneficial effects of NIM811 were also detected (i) in primary muscle-derived cell cultures from UCMD and BM patients, where the typical mitochondrial alterations and depolarizing response to rotenone and oligomycin were significantly reduced; and (ii) in the Col6a1(-/-) myopathic mouse model, where apoptosis was prevented and muscle strength was increased. Since the PTP of zebrafish shares its key regulatory features with the mammalian pore, our results suggest that early treatment with NIM811 should be tested as a potential therapy for UCMD and BM.


Asunto(s)
Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Ciclosporina/administración & dosificación , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/patología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Ciclosporina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias/metabolismo , Fuerza Muscular/efectos de los fármacos , Distrofias Musculares/congénito , Distrofias Musculares/genética , Pez Cebra
20.
Development ; 140(22): 4594-601, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24131633

RESUMEN

The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Notocorda/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Morfolinos/farmacología , Notocorda/citología , Notocorda/efectos de los fármacos , Notocorda/embriología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA