Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 162(4): 860-71, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276634

RESUMEN

Transposons are ubiquitous genetic elements that drive genome rearrangements, evolution, and the spread of infectious disease and drug-resistance. Many transposons, such as Mu, Tn7, and IS21, require regulatory AAA+ ATPases for function. We use X-ray crystallography and cryo-electron microscopy to show that the ATPase subunit of IS21, IstB, assembles into a clamshell-shaped decamer that sandwiches DNA between two helical pentamers of ATP-associated AAA+ domains, sharply bending the duplex into a 180° U-turn. Biochemical studies corroborate key features of the structure and further show that the IS21 transposase, IstA, recognizes the IstB•DNA complex and promotes its disassembly by stimulating ATP hydrolysis. Collectively, these studies reveal a distinct manner of higher-order assembly and client engagement by a AAA+ ATPase and suggest a mechanistic model where IstB binding and subsequent DNA bending primes a selected insertion site for efficient transposition.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Elementos Transponibles de ADN , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/clasificación , Bacterias/enzimología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Transposasas/metabolismo
2.
Nature ; 630(8018): 1003-1011, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926614

RESUMEN

Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.


Asunto(s)
Dominio AAA , Adenosina Trifosfatasas , Transposasas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Dominio Catalítico , Microscopía por Crioelectrón , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , Activación Enzimática , Modelos Moleculares , Multimerización de Proteína , Transposasas/metabolismo , Transposasas/química
3.
Cell ; 153(2): 438-48, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23562643

RESUMEN

Dedicated AAA+ ATPases deposit hexameric ring-shaped helicases onto DNA to promote replication in cellular organisms. To understand how loading occurs, we used electron microscopy and small angle X-ray scattering (SAXS) to determine the ATP-bound structure of the intact E. coli DnaB⋅DnaC helicase/loader complex. The 480 kDa dodecamer forms a three-tiered assembly, in which DnaC adopts a spiral configuration that remodels N-terminal scaffolding and C-terminal motor regions of DnaB to produce a clear break in the helicase ring. Surprisingly, DnaC's AAA+ fold is dispensable for ring remodeling because the DnaC isolated helicase-binding domain can both load DnaB onto DNA and increase the efficiency by which the helicase acts on substrates in vitro. Our data demonstrate that DnaC opens DnaB by a mechanism akin to that of polymerase clamp loaders and indicate that bacterial replicative helicases, like their eukaryotic counterparts, possess autoregulatory elements that influence how hexameric motor domains are loaded onto and unwind DNA.


Asunto(s)
AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Replicación del ADN , AdnB Helicasas/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Geobacillus stearothermophilus/química , Microscopía Electrónica , Modelos Moleculares , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño
4.
Mol Cell ; 74(1): 173-184.e4, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797687

RESUMEN

In cells, dedicated AAA+ ATPases deposit hexameric, ring-shaped helicases onto DNA to initiate chromosomal replication. To better understand the mechanisms by which helicase loading can occur, we used cryo-EM to determine sub-4-Å-resolution structures of the E. coli DnaB⋅DnaC helicase⋅loader complex with nucleotide in pre- and post-DNA engagement states. In the absence of DNA, six DnaC protomers latch onto and crack open a DnaB hexamer using an extended N-terminal domain, stabilizing this conformation through nucleotide-dependent ATPase interactions. Upon binding DNA, DnaC hydrolyzes ATP, allowing DnaB to isomerize into a topologically closed, pre-translocation state competent to bind primase. Our data show how DnaC opens the DnaB ring and represses the helicase prior to DNA binding and how DnaC ATPase activity is reciprocally regulated by DnaB and DNA. Comparative analyses reveal how the helicase loading mechanism of DnaC parallels and diverges from homologous AAA+ systems involved in DNA replication and transposition.


Asunto(s)
Replicación del ADN , ADN Bacteriano/biosíntesis , AdnB Helicasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Adenosina Trifosfato/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ADN Primasa/genética , ADN Primasa/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , AdnB Helicasas/química , AdnB Helicasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hidrólisis , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
5.
PLoS Genet ; 15(12): e1008557, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31869332

RESUMEN

TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the 'Trs33 side' of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Cromatografía en Gel , Proteínas Fúngicas/metabolismo , Humanos , Mamíferos/metabolismo , Espectrometría de Masas , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 52(6): 844-54, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24373746

RESUMEN

Cellular replication forks are powered by ring-shaped, hexameric helicases that encircle and unwind DNA. To better understand the molecular mechanisms and control of these enzymes, we used multiple methods to investigate the bacterial replicative helicase, DnaB. A 3.3 Å crystal structure of Aquifex aeolicus DnaB, complexed with nucleotide, reveals a newly discovered conformational state for this motor protein. Electron microscopy and small angle X-ray scattering studies confirm the state seen crystallographically, showing that the DnaB ATPase domains and an associated N-terminal collar transition between two physical states in a nucleotide-dependent manner. Mutant helicases locked in either collar state are active but display different capacities to support critical activities such as duplex translocation and primase-dependent RNA synthesis. Our findings establish the DnaB collar as an autoregulatory hub that controls the ability of the helicase to transition between different functional states in response to both nucleotide and replication initiation/elongation factors.


Asunto(s)
Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/biosíntesis , AdnB Helicasas/metabolismo , Nucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , AdnB Helicasas/química , AdnB Helicasas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , ARN Bacteriano/biosíntesis , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
7.
Genes Dev ; 25(2): 153-64, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21245168

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that regulates the degradation of mRNAs harboring premature translation termination codons. NMD also influences the expression of many physiological transcripts. SMG-1 is a large kinase essential to NMD that phosphorylates Upf1, which seems to be the definitive signal triggering mRNA decay. However, the regulation of the kinase activity of SMG-1 remains poorly understood. Here, we reveal the three-dimensional architecture of SMG-1 in complex with SMG-8 and SMG-9, and the structural mechanisms regulating SMG-1 kinase. A bent arm comprising a long region of HEAT (huntington, elongation factor 3, a subunit of PP2A and TOR1) repeats at the N terminus of SMG-1 functions as a scaffold for SMG-8 and SMG-9, and projects from the C-terminal core containing the phosphatidylinositol 3-kinase domain. SMG-9 seems to control the activity of SMG-1 indirectly through the recruitment of SMG-8 to the N-terminal HEAT repeat region of SMG-1. Notably, SMG-8 binding to the SMG-1:SMG-9 complex specifically down-regulates the kinase activity of SMG-1 on Upf1 without contacting the catalytic domain. Assembly of the SMG-1:SMG-8:SMG-9 complex induces a significant motion of the HEAT repeats that is signaled to the kinase domain. Thus, large-scale conformational changes induced by SMG-8 after SMG-9-mediated recruitment tune SMG-1 kinase activity to modulate NMD.


Asunto(s)
Modelos Moleculares , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosfatidilinositol 3-Quinasas/genética , Proteínas Quinasas/genética , Multimerización de Proteína/fisiología , Proteínas Serina-Treonina Quinasas , Estructura Cuaternaria de Proteína , ARN Helicasas , Proteínas Recombinantes/metabolismo , Transactivadores/metabolismo
8.
Nucleic Acids Res ; 41(15): 7512-21, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23766293

RESUMEN

The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Hepacivirus/metabolismo , Biosíntesis de Proteínas , ARN Viral/metabolismo , Sitios de Unión , Codón Iniciador/genética , Codón Iniciador/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Secuencias Hélice-Asa-Hélice , Hepacivirus/genética , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Viral/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
9.
Nature ; 455(7209): 124-7, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18660803

RESUMEN

Epac proteins are activated by binding of the second messenger cAMP and then act as guanine nucleotide exchange factors for Rap proteins. The Epac proteins are involved in the regulation of cell adhesion and insulin secretion. Here we have determined the structure of Epac2 in complex with a cAMP analogue (Sp-cAMPS) and RAP1B by X-ray crystallography and single particle electron microscopy. The structure represents the cAMP activated state of the Epac2 protein with the RAP1B protein trapped in the course of the exchange reaction. Comparison with the inactive conformation reveals that cAMP binding causes conformational changes that allow the cyclic nucleotide binding domain to swing from a position blocking the Rap binding site towards a docking site at the Ras exchange motif domain.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , AMP Cíclico/análogos & derivados , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Tionucleótidos/química , Tionucleótidos/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/ultraestructura , Cristalografía por Rayos X , AMP Cíclico/química , AMP Cíclico/metabolismo , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Humanos , Ratones , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas de Unión al GTP rap/química , Proteínas de Unión al GTP rap/ultraestructura
10.
Nucleic Acids Res ; 39(1): 347-58, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20817927

RESUMEN

SMG-9 is part of a protein kinase complex, SMG1C, which consists of the SMG-1 kinase, SMG-8 and SMG-9. SMG1C mediated phosphorylation of Upf1 triggers nonsense-mediated mRNA decay (NMD), a eukaryotic surveillance pathway that detects and targets for degradation mRNAs harboring premature translation termination codons. Here, we have characterized SMG-9, showing that it comprises an N-terminal 180 residue intrinsically disordered region (IDR) followed by a well-folded C-terminal domain. Both domains are required for SMG-1 binding and the integrity of the SMG1C complex, whereas the C-terminus is sufficient to interact with SMG-8. In addition, we have found that SMG-9 assembles in vivo into SMG-9:SMG-9 and, most likely, SMG-8:SMG-9 complexes that are not constituents of SMG1C. SMG-9 self-association is driven by interactions between the C-terminal domains and surprisingly, some SMG-9 oligomers are completely devoid of SMG-1 and SMG-8. We propose that SMG-9 has biological functions beyond SMG1C, as part of distinct SMG-9-containing complexes. Some of these complexes may function as intermediates potentially regulating SMG1C assembly, tuning the activity of SMG-1 with the NMD machinery. The structural malleability of IDRs could facilitate the transit of SMG-9 through several macromolecular complexes.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/química , Codón sin Sentido , Células HeLa , Humanos , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo
11.
Nat Commun ; 14(1): 2335, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087515

RESUMEN

Transposases are ubiquitous enzymes that catalyze DNA rearrangement events with broad impacts on gene expression, genome evolution, and the spread of drug-resistance in bacteria. Here, we use biochemical and structural approaches to define the molecular determinants by which IstA, a transposase present in the widespread IS21 family of mobile elements, catalyzes efficient DNA transposition. Solution studies show that IstA engages the transposon terminal sequences to form a high-molecular weight complex and promote DNA integration. A 3.4 Šresolution structure of the transposase bound to transposon ends corroborates our biochemical findings and reveals that IstA self-assembles into a highly intertwined tetramer that synapses two supercoiled terminal inverted repeats. The three-dimensional organization of the IstA•DNA cleaved donor complex reveals remarkable similarities with retroviral integrases and classic transposase systems, such as Tn7 and bacteriophage Mu, and provides insights into IS21 transposition.


Asunto(s)
Elementos Transponibles de ADN , Transposasas , Transposasas/genética , Transposasas/metabolismo , Secuencia de Bases , Elementos Transponibles de ADN/genética , Integrasas/metabolismo , Bacterias/genética
12.
Sci Adv ; 9(38): eadi6813, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729416

RESUMEN

Plastic waste management is a pressing ecological, social, and economic challenge. The saliva of the lepidopteran Galleria mellonella larvae is capable of oxidizing and depolymerizing polyethylene in hours at room temperature. Here, we analyze by cryo-electron microscopy (cryo-EM) G. mellonella's saliva directly from the native source. The three-dimensional reconstructions reveal that the buccal secretion is mainly composed of four hexamerins belonging to the hemocyanin/phenoloxidase family, renamed Demetra, Cibeles, Ceres, and a previously unidentified factor termed Cora. Functional assays show that this factor, as its counterparts Demetra and Ceres, is also able to oxidize and degrade polyethylene. The cryo-EM data and the x-ray analysis from purified fractions show that they self-assemble primarily into three macromolecular complexes with striking structural differences that likely modulate their activity. Overall, these results establish the ground to further explore the hexamerins' functionalities, their role in vivo, and their eventual biotechnological application.


Asunto(s)
Polietileno , Saliva , Animales , Microscopía por Crioelectrón , Insectos
13.
Microb Biotechnol ; 15(10): 2607-2618, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35830334

RESUMEN

Vip3 proteins are produced by Bacillus thuringiensis and are toxic against lepidopterans, reason why the vip3Aa gene has been introduced into cotton and corn to control agricultural pests. Recently, the structure of Vip3 proteins has been determined and consists of a tetramer where each monomer is composed of five structural domains. The transition from protoxin to the trypsin-activated form involves a major conformational change of the N-terminal Domain I, which is remodelled into a tetrameric coiled-coil structure that is thought to insert into the apical membrane of the midgut cells. To better understand the relevance of this major change in Domain I for the insecticidal activity, we have generated several mutants aimed to alter the activity and remodelling capacity of this central region to understand its function. These mutants have been characterized by proteolytic processing, negative staining electron microscopy, and toxicity bioassays against Spodoptera exigua. The results show the crucial role of helix α1 for the insecticidal activity and in restraining the Domain I in the protoxin conformation, the importance of the remodelling of helices α2 and α3, the proteolytic processing that takes place between Domains I and II, and the role of the C-t Domains IV and V to sustain the conformational change necessary for toxicity.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Animales , Bacillus thuringiensis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Endotoxinas/genética , Endotoxinas/metabolismo , Endotoxinas/toxicidad , Insecticidas/metabolismo , Insecticidas/farmacología , Spodoptera/metabolismo , Tripsina/química , Tripsina/metabolismo
14.
iScience ; 25(7): 104514, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754728

RESUMEN

In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.

15.
J Biol Chem ; 285(46): 35694-705, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20826820

RESUMEN

The BzdR transcriptional regulator that controls the P(N) promoter responsible for the anaerobic catabolism of benzoate in Azoarcus sp. CIB constitutes the prototype of a new subfamily of transcriptional regulators. Here, we provide some insights about the functional-structural relationships of the BzdR protein. Analytical ultracentrifugation studies revealed that BzdR is homodimeric in solution. An electron microscopy three-dimensional reconstruction of the BzdR dimer has been obtained, and the predicted structures of the respective N- and C-terminal domains of each BzdR monomer could be fitted into such a reconstruction. Gel retardation and ultracentrifugation experiments have shown that the binding of BzdR to its cognate promoter is cooperative. Different biochemical approaches revealed that the effector molecule benzoyl-CoA induces conformational changes in BzdR without affecting its oligomeric state. The BzdR-dependent inhibition of the P(N) promoter and its activation in the presence of benzoyl-CoA have been established by in vitro transcription assays. The monomeric BzdR4 and BzdR5 mutant regulators revealed that dimerization of BzdR is essential for DNA binding. Remarkably, a BzdRΔL protein lacking the linker region connecting the N- and C-terminal domains of BzdR is also dimeric and behaves as a super-repressor of the P(N) promoter. These data suggest that the linker region of BzdR is not essential for protein dimerization, but rather it is required to transfer the conformational changes induced by the benzoyl-CoA to the DNA binding domain leading to the release of the repressor. A model of action of the BzdR regulator has been proposed.


Asunto(s)
Azoarcus/metabolismo , Proteínas Bacterianas/química , Conformación Proteica , Transactivadores/química , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Azoarcus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Transactivadores/genética , Transactivadores/metabolismo
16.
Nat Struct Mol Biol ; 28(1): 92-102, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33398171

RESUMEN

Spo11, which makes DNA double-strand breaks (DSBs) that are essential for meiotic recombination, has long been recalcitrant to biochemical study. We provide molecular analysis of Saccharomyces cerevisiae Spo11 purified with partners Rec102, Rec104 and Ski8. Rec102 and Rec104 jointly resemble the B subunit of archaeal topoisomerase VI, with Rec104 occupying a position similar to the Top6B GHKL-type ATPase domain. Unexpectedly, the Spo11 complex is monomeric (1:1:1:1 stoichiometry), consistent with dimerization controlling DSB formation. Reconstitution of DNA binding reveals topoisomerase-like preferences for duplex-duplex junctions and bent DNA. Spo11 also binds noncovalently but with high affinity to DNA ends mimicking cleavage products, suggesting a mechanism to cap DSB ends. Mutations that reduce DNA binding in vitro attenuate DSB formation, alter DSB processing and reshape the DSB landscape in vivo. Our data reveal structural and functional similarities between the Spo11 core complex and Topo VI, but also highlight differences reflecting their distinct biological roles.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Arqueales/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Microscopía de Fuerza Atómica , Mutación/genética , Conformación de Ácido Nucleico , Recombinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochim Biophys Acta ; 1794(8): 1211-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19409513

RESUMEN

Syk is a cytoplasmic tyrosine kinase that is activated after recruitment to immune receptors, triggering the phopshorylation of downstream targets. The kinase activity of Syk is controlled by an auto-inhibited conformation consisting of a regulatory region that contains two N-terminal Src homology 2 (SH2) domains inhibiting the catalytic activity of the kinase domain located at the C-terminus. The atomic structure of the related Zap-70 kinase and an electron microscopy (EM) model of Syk have revealed the structural mechanism of this auto-inhibition based on the formation of a compact conformation sustained by interactions between the regulatory and catalytic domains. On the other hand, the structural basis of Syk activation is not fully understood due to the lack of a 3D structure of full-length Syk in an active conformation. Here, we have used single-particle electron microscopy to analyse the conformational changes taking place in an activated form of Syk induced by auto-phosphorylation. The conformation of phosphorylated Syk is reminiscent of the compact structure of the inhibited protein but significant conformational changes are observed in the regulatory region. These rearrangements could be sufficient to disrupt the inhibitory interactions, contributing to Syk activation. These results suggest that the regulation of the activation of Syk might be modulated by subtle changes in the positioning of the regulatory domains rather than a full opening mechanism as proposed for the Src kinases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Tirosina Quinasas/química , Animales , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía Electrónica , Modelos Moleculares , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/ultraestructura , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/ultraestructura , Quinasa Syk
18.
Structure ; 16(10): 1511-20, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18940606

RESUMEN

Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 A. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared with the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different than previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/aislamiento & purificación , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/aislamiento & purificación , ADN Helicasas/fisiología , Hidrólisis , Sustancias Macromoleculares/química , Sustancias Macromoleculares/aislamiento & purificación , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/fisiología , Ácidos Nucleicos/metabolismo , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción
19.
Nat Commun ; 11(1): 3974, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32769995

RESUMEN

Bacillus thuringiensis Vip3 (Vegetative Insecticidal Protein 3) toxins are widely used in biotech crops to control Lepidopteran pests. These proteins are produced as inactive protoxins that need to be activated by midgut proteases to trigger cell death. However, little is known about their three-dimensional organization and activation mechanism at the molecular level. Here, we have determined the structures of the protoxin and the protease-activated state of Vip3Aa at 2.9 Å using cryo-electron microscopy. The reconstructions show that the protoxin assembles into a pyramid-shaped tetramer with the C-terminal domains exposed to the solvent and the N-terminal region folded into a spring-loaded apex that, after protease activation, drastically remodels into an extended needle by a mechanism akin to that of influenza haemagglutinin. These results provide the molecular basis for Vip3 activation and function, and serves as a strong foundation for the development of more efficient insecticidal proteins.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/ultraestructura , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Tripsina/metabolismo
20.
Dev Biol ; 321(2): 331-42, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18638468

RESUMEN

We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.


Asunto(s)
Diferenciación Celular/fisiología , Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Protozoarias/metabolismo , Animales , Biología Computacional , Cartilla de ADN/genética , Proteínas Fúngicas/genética , Hibridación in Situ , Mutagénesis , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Temperatura , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA