Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Chem Soc ; 139(33): 11434-11442, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28715891

RESUMEN

S K-edge X-ray absorption spectroscopy (XAS) was used to study the [Fe4S4] clusters in the DNA repair glycosylases EndoIII and MutY to evaluate the effects of DNA binding and solvation on Fe-S bond covalencies (i.e., the amount of S 3p character mixed into the Fe 3d valence orbitals). Increased covalencies in both iron-thiolate and iron-sulfide bonds would stabilize the oxidized state of the [Fe4S4] clusters. The results are compared to those on previously studied [Fe4S4] model complexes, ferredoxin (Fd), and to new data on high-potential iron-sulfur protein (HiPIP). A limited decrease in covalency is observed upon removal of solvent water from EndoIII and MutY, opposite to the significant increase observed for Fd, where the [Fe4S4] cluster is solvent exposed. Importantly, in EndoIII and MutY, a large increase in covalency is observed upon DNA binding, which is due to the effect of its negative charge on the iron-sulfur bonds. In EndoIII, this change in covalency can be quantified and makes a significant contribution to the observed decrease in reduction potential found experimentally in DNA repair proteins, enabling their HiPIP-like redox behavior.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Geobacillus stearothermophilus/enzimología , Bacterias/química , Bacterias/enzimología , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , ADN Glicosilasas/química , Desoxirribonucleasa (Dímero de Pirimidina)/química , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Unión Proteica , Espectroscopía de Absorción de Rayos X/métodos
2.
Langmuir ; 33(10): 2523-2530, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28219007

RESUMEN

Escherichia coli endonuclease III (EndoIII) and MutY are DNA glycosylases that contain [4Fe4S] clusters and that serve to maintain the integrity of the genome after oxidative stress. Electrochemical studies on highly oriented pyrolytic graphite (HOPG) revealed that DNA binding by EndoIII leads to a large negative shift in the midpoint potential of the cluster, consistent with stabilization of the oxidized [4Fe4S]3+ form. However, the smooth, hydrophobic HOPG surface is nonideal for working with proteins in the absence of DNA. In this work, we use thin film voltammetry on a pyrolytic graphite edge electrode to overcome these limitations. Improved adsorption leads to substantial signals for both EndoIII and MutY in the absence of DNA, and a large negative potential shift is retained with DNA present. In contrast, the EndoIII mutants E200K, Y205H, and K208E, which provide electrostatic perturbations in the vicinity of the cluster, all show DNA-free potentials within error of wild type; similarly, the presence of negatively charged poly-l-glutamate does not lead to a significant potential shift. Overall, binding to the DNA polyanion is the dominant effect in tuning the redox potential of the [4Fe4S] cluster, helping to explain why all DNA-binding proteins with [4Fe4S] clusters studied to date have similar DNA-bound potentials.


Asunto(s)
Reparación del ADN , ADN , ADN Glicosilasas , Técnicas Electroquímicas , Hierro , Oxidación-Reducción , Azufre
3.
J Am Chem Soc ; 138(35): 11290-8, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27571139

RESUMEN

Dps proteins are bacterial ferritins that protect DNA from oxidative stress and have been implicated in bacterial survival and virulence. In addition to direct oxidation of the Dps iron sites by diffusing oxidants, oxidation from a distance via DNA charge transport (CT), where electrons and electron holes are rapidly transported through the base-pair π-stack, could represent an efficient DNA protection mechanism utilized by Dps. Here, we spectroscopically characterize the DNA-mediated oxidation of ferrous iron-loaded Dps. X-band EPR was used to monitor the oxidation of DNA-bound Dps after DNA photooxidation using an intercalating ruthenium photooxidant and the flash-quench technique. Upon irradiation with poly(dGdC)2, a signal arises with g = 4.3, consistent with the formation of mononuclear high-spin Fe(III) sites of low symmetry, the expected oxidation product of Dps with one iron bound at each ferroxidase site. When poly(dGdC)2 is substituted with poly(dAdT)2, the yield of Dps oxidation is decreased significantly, consistent with guanine radical intermediates facilitating Dps oxidation. We have also explored possible protein electron transfer (ET) intermediates in the DNA-mediated oxidation of ferrous iron-loaded Dps. Dps proteins contain a conserved tryptophan residue in close proximity to the iron-binding ferroxidase site (W52 in E. coli Dps). In EPR studies of the oxidation of ferrous iron-loaded Dps following DNA photooxidation, a W52A Dps mutant was significantly deficient compared to WT Dps in forming the characteristic EPR signal at g = 4.3, consistent with W52 acting as an ET hopping intermediate. This effect is mirrored in vivo in E. coli survival in response to hydrogen peroxide, where mutation of W52 leads to decreased survival under oxidative stress.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Peróxido de Hidrógeno/farmacología , Hierro/metabolismo , Modelos Moleculares , Mutagénesis , Mutación , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Conformación Proteica
4.
J Am Chem Soc ; 135(42): 15726-9, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24117127

RESUMEN

Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. Here we examine the mechanism of E. coli Dps protection of DNA, specifically whether this DNA-binding protein can utilize DNA charge transport through the base pair π-stack to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate DNA damage localized to guanine repeats, the sites of lowest potential in DNA. We find that Dps loaded with ferrous iron, in contrast to Apo-Dps and ferric iron-loaded Dps, significantly attenuates the yield of oxidative DNA damage. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill guanine radical holes, thereby restoring the integrity of the DNA. Luminescence studies indicate no direct interaction between the ruthenium photooxidant and Dps, supporting the DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA charge transport may be a mechanism by which Dps efficiently protects the genome of pathogenic bacteria from a distance.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Ferritinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN/metabolismo , Transporte de Electrón , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferritinas/metabolismo , Mediciones Luminiscentes , Modelos Moleculares , Conformación Molecular
5.
J Am Chem Soc ; 135(32): 11869-78, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23899026

RESUMEN

Here we describe a multiplexed electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins containing redox cofactors, and multiplexing offers a means to probe different complex samples and substrates in parallel to elucidate this chemistry. Multiplexed analysis of endonuclease III (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, shows subtle differences in the electrochemical behavior as a function of DNA morphology. The peak splitting, signal broadness, sensitivity to π-stack perturbations, and kinetics were all characterized for the DNA-bound reduction of EndoIII on both closely and loosely packed DNA films. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction; closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. Multiplexing furthermore permits the comparison of the electrochemistry of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Técnicas Electroquímicas , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Modelos Moleculares , Oxidación-Reducción , Mutación Puntual
6.
J Biol Inorg Chem ; 18(6): 645-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23779234

RESUMEN

Sulfite oxidase (SO) is a vital metabolic enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed mechanism of this molybdenum cofactor dependent enzyme involves two one-electron intramolecular electron transfer (IET) steps from the molybdenum center to the iron of the b 5-type heme and two one-electron intermolecular electron transfer steps from the heme to cytochrome c. This work focuses on how the electrostatic interaction between two conserved amino acid residues, R472 and D342, in human SO (hSO) affects catalysis. The hSO variants R472M, R472Q, R472K, R472D, and D342K were created to probe the effect of the position of the salt bridge charges, along with the interaction between these two residues. With the exception of R472K, these variants all showed a significant decrease in their IET rate constants, k et, relative to wild-type hSO, indicating that the salt bridge between residues 472 and 342 is important for rapid IET. Surprisingly, however, except for R472K and R472D, all of the variants show k cat values higher than their corresponding k et values. The turnover number for R472D is about the same as k et, which suggests that the change in this variant is rate-limiting in catalysis. Direct spectroelectrochemical determination of the Fe(III/II) reduction potentials of the heme and calculation of the Mo(VI/V) potentials revealed that all of the variants affected the redox potentials of both metal centers, probably due to changes in their environments. Thus, the position of the positive charge of R472 and that of the negative charge of D342 are both important in hSO, and changing either the position or the nature of these charges perturbs IET and catalysis.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Sales (Química)/metabolismo , Transporte de Electrón , Humanos , Cinética , Rayos Láser , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Fotólisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sales (Química)/química
7.
Inorg Chem ; 51(3): 1408-18, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22225516

RESUMEN

In our previous study of the fatal R160Q mutant of human sulfite oxidase (hSO) at low pH (Astashkin et al. J. Am. Chem. Soc.2008, 130, 8471-8480), a new Mo(V) species, denoted "species 1", was observed at low pH values. Species 1 was ascribed to a six-coordinate Mo(V) center with an exchangeable terminal oxo ligand and an equatorial sulfate group on the basis of pulsed EPR spectroscopy and (33)S and (17)O labeling. Here we report new results for species 1 of R160Q, based on substitution of the sulfur-containing ligand by a phosphate group, pulsed EPR spectroscopy in K(a)- and W-bands, and extensive density functional theory (DFT) calculations applied to large, more realistic molecular models of the enzyme active site. The combined results unambiguously show that species 1 has an equatorial sulfite as the only exchangeable ligand. The two types of (17)O signals that are observed arise from the coordinated and remote oxygen atoms of the sulfite ligand. A typical five-coordinate Mo(V) site is compatible with the observed and calculated EPR parameters.


Asunto(s)
Molibdeno/química , Sulfito-Oxidasa/química , Azufre/química , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Ligandos
8.
Cell Chem Biol ; 23(1): 183-197, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26933744

RESUMEN

The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science, and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology.


Asunto(s)
ADN/química , Electrones , Animales , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Técnicas Electroquímicas/métodos , Transporte de Electrón , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Estrés Oxidativo , Procesos Fotoquímicos , Transducción de Señal
9.
Metallomics ; 6(9): 1664-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24968320

RESUMEN

Several point mutations in the gene of human sulfite oxidase (hSO) result in isolated sulfite oxidase deficiency, an inherited metabolic disorder. Three conserved residues (H304, R309, K322) are hydrogen bonded to the phosphate group of the molybdenum cofactor, and the R309H and K322R mutations are responsible for isolated sulfite oxidase deficiency. The kinetic effects of the K322R mutation have been previously reported (Rajapakshe et al., Chem. Biodiversity, 2012, 9, 1621-1634); here we investigate several mutants of H304 and R309 by steady-state kinetics, laser flash photolysis studies of intramolecular electron transfer (IET), and spectroelectrochemistry. An unexpected result is that all of the mutants show decreased rates of IET but increased steady-state rates of catalysis. However, in all cases the rate of IET is greater than the overall turnover rate, showing that IET is not the rate determining step for any of the mutations.


Asunto(s)
Arginina/genética , Histidina/genética , Mutación/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Secuencia Conservada , Cristalografía por Rayos X , Electroquímica , Electrones , Humanos , Hierro/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA