Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(8): 960-973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030362

RESUMEN

Drug-discovery and drug-development endeavors are laborious, costly and time consuming. These programs can take upward of 12 years and cost US $2.5 billion, with a failure rate of more than 90%. Machine learning (ML) presents an opportunity to improve the drug-discovery process. Indeed, with the growing abundance of public and private large-scale biological and chemical datasets, ML techniques are becoming well positioned as useful tools that can augment the traditional drug-development process. In this Perspective, we discuss the integration of algorithmic methods throughout the preclinical phases of drug discovery. Specifically, we highlight an array of ML-based efforts, across diverse disease areas, to accelerate initial hit discovery, mechanism-of-action (MOA) elucidation and chemical property optimization. With advances in the application of ML across diverse therapeutic areas, we posit that fully ML-integrated drug-discovery pipelines will define the future of drug-development programs.


Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Descubrimiento de Drogas/métodos , Humanos , Evaluación Preclínica de Medicamentos/métodos , Algoritmos
2.
Expert Opin Drug Discov ; 18(11): 1259-1272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651150

RESUMEN

INTRODUCTION: Natural products (NPs) are a desirable source of new therapeutics due to their structural diversity and evolutionarily optimized bioactivities. NPs and their derivatives account for roughly 70% of approved pharmaceuticals. However, the rate at which novel NPs are discovered has decreased. To accelerate the microbial NP discovery process, machine learning (ML) is being applied to numerous areas of NP discovery and development. AREAS COVERED: This review explores the utility of ML at various phases of the microbial NP drug discovery pipeline, discussing concrete examples throughout each major phase: genome mining, dereplication, and biological target prediction. Moreover, the authors discuss how ML approaches can be applied to semi-synthetic approaches to drug discovery. EXPERT OPINION: Despite the important role that microbial NPs play in the development of novel drugs, their discovery has declined due to challenges associated with the conventional discovery process. ML is positioned to overcome these limitations given its ability to model complex datasets and generalize to novel chemical and sequence space. Unsurprisingly, ML comes with its own limitations that must be considered for its successful implementation. The authors stress the importance of continuing to build high quality and open access NP datasets to further increase the utility of ML in NP discovery.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Humanos , Preparaciones Farmacéuticas , Aprendizaje Automático , Productos Biológicos/farmacología , Productos Biológicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA