RESUMEN
There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.
Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Delgadez/genética , Tejido Adiposo/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Drosophila/genética , Estonia , Femenino , Humanos , Leptina/genética , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Interferencia de ARN/fisiología , Adulto JovenRESUMEN
All multicellular organisms rely on differential gene transcription regulated by genomic enhancers, which function through cofactors that are recruited by transcription factors1,2. Emerging evidence suggests that not all cofactors are required at all enhancers3-5, yet whether these observations reflect more general principles or distinct types of enhancers remained unknown. Here we categorized human enhancers by their cofactor dependencies and show that these categories provide a framework to understand the sequence and chromatin diversity of enhancers and their roles in different gene-regulatory programmes. We quantified enhancer activities along the entire human genome using STARR-seq6 in HCT116 cells, following the rapid degradation of eight cofactors. This analysis identified different types of enhancers with distinct cofactor requirements, sequences and chromatin properties. Some enhancers were insensitive to the depletion of the core Mediator subunit MED14 or the bromodomain protein BRD4 and regulated distinct transcriptional programmes. In particular, canonical Mediator7 seemed dispensable for P53-responsive enhancers, and MED14-depleted cells induced endogenous P53 target genes. Similarly, BRD4 was not required for the transcription of genes that bear CCAAT boxes and a TATA box (including histone genes and LTR12 retrotransposons) or for the induction of heat-shock genes. This categorization of enhancers through cofactor dependencies reveals distinct enhancer types that can bypass broadly utilized cofactors, which illustrates how alternative ways to activate transcription separate gene expression programmes and provide a conceptual framework to understand enhancer function and regulatory specificity.
Asunto(s)
Elementos de Facilitación Genéticos , Factores de Transcripción , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Humanos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Transcriptional cofactors (COFs) communicate regulatory cues from enhancers to promoters and are central effectors of transcription activation and gene expression1. Although some COFs have been shown to prefer certain promoter types2-5 over others (for example, see refs 6,7), the extent to which different COFs display intrinsic specificities for distinct promoters is unclear. Here we use a high-throughput promoter-activity assay in Drosophila melanogaster S2 cells to screen 23 COFs for their ability to activate 72,000 candidate core promoters (CPs). We observe differential activation of CPs, indicating distinct regulatory preferences or 'compatibilities'8,9 between COFs and specific types of CPs. These functionally distinct CP types are differentially enriched for known sequence elements2,4, such as the TATA box, downstream promoter element (DPE) or TCT motif, and display distinct chromatin properties at endogenous loci. Notably, the CP types differ in their relative abundance of H3K4me3 and H3K4me1 marks (see also refs 10-12), suggesting that these histone modifications might distinguish trans-regulatory factors rather than promoter- versus enhancer-type cis-regulatory elements. We confirm the existence of distinct COF-CP compatibilities in two additional Drosophila cell lines and in human cells, for which we find COFs that prefer TATA-box or CpG-island promoters, respectively. Distinct compatibilities between COFs and promoters can explain how different enhancers specifically activate distinct sets of genes9, alternative promoters within the same genes, and distinct transcription start sites within the same promoter13. Thus, COF-promoter compatibilities may underlie distinct transcriptional programs in species as divergent as flies and humans.
Asunto(s)
Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional , Animales , Línea Celular , Cromatina/genética , Islas de CpG/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Histonas/metabolismo , Humanos , Especificidad por Sustrato , TATA Box/genética , Sitio de Iniciación de la TranscripciónRESUMEN
Even though transcription factors (TFs) are central players of gene regulation and have been extensively studied, their regulatory trans-activation domains (tADs) often remain unknown and a systematic functional characterization of tADs is lacking. Here, we present a novel high-throughput approach tAD-seq to functionally test thousands of candidate tADs from different TFs in parallel. The tADs we identify by pooled screening validate in individual luciferase assays, whereas neutral regions do not. Interestingly, the tADs are found at arbitrary positions within the TF sequences and can contain amino acid (e.g., glutamine) repeat regions or overlap structured domains, including helix-loop-helix domains that are typically annotated as DNA-binding. We also identified tADs in the non-native reading frames, confirming that random sequences can function as tADs, albeit weakly. The identification of tADs as short protein sequences sufficient for transcription activation will enable the systematic study of TF function, which-particularly for TFs of different transcription activating functionalities-is still poorly understood.
Asunto(s)
Proteínas de Drosophila , Transactivadores , Transcripción Genética , Animales , Línea Celular , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster , Dominios Proteicos , Transactivadores/biosíntesis , Transactivadores/genéticaRESUMEN
Steroid hormones act as important developmental switches, and their nuclear receptors regulate many genes. However, few hormone-dependent enhancers have been characterized, and important aspects of their sequence architecture, cell-type-specific activating and repressing functions, or the regulatory roles of their chromatin structure have remained unclear. We used STARR-seq, a recently developed enhancer-screening assay, and ecdysone signaling in two different Drosophila cell types to derive genome-wide hormone-dependent enhancer-activity maps. We demonstrate that enhancer activation depends on cis-regulatory motif combinations that differ between cell types and can predict cell-type-specific ecdysone targeting. Activated enhancers are often not accessible prior to induction. Enhancer repression following hormone treatment seems independent of receptor motifs and receptor binding to the enhancer, as we show using ChIP-seq, but appears to rely on motifs for other factors, including Eip74. Our strategy is applicable to study signal-dependent enhancers for different pathways and across organisms.
Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Ecdisona/farmacología , Elementos de Facilitación Genéticos/efectos de los fármacos , Represión Epigenética/efectos de los fármacos , Motivos de Nucleótidos/efectos de los fármacos , Ovario/efectos de los fármacos , Animales , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Ovario/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Máquina de Vectores de Soporte , Activación Transcripcional/efectos de los fármacos , TransfecciónRESUMEN
The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that such assays are rendered unreliable by two previously reported phenomena relating to plasmid transfection into human cells: (i) the bacterial plasmid origin of replication (ORI) functions as a conflicting core promoter and (ii) a type I interferon (IFN-I) response is activated. These cause confounding false positives and negatives in luciferase assays and STARR-seq screens. We overcome both problems by employing the ORI as core promoter and by inhibiting two IFN-I-inducing kinases, enabling genome-wide STARR-seq screens in human cells. In HeLa-S3 cells, we uncover strong enhancers, IFN-I-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells and are key to the characterization of human enhancers.
Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Genes Reporteros , Regiones Promotoras Genéticas , Mapeo Cromosómico , Reacciones Falso Negativas , Genoma Humano , Células HeLa , HumanosRESUMEN
Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.
Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Esenciales/genética , Regiones Promotoras Genéticas/genética , Animales , Secuencia de Bases , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Genoma de los Insectos/genética , Modelos Genéticos , Especificidad de Órganos , Especificidad por Sustrato/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genéticaRESUMEN
Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers' cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.
Asunto(s)
Repeticiones de Dinucleótido , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Motivos de Nucleótidos , Animales , Secuencia de Bases , Línea Celular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Biológicos , Especificidad de Órganos/genética , Factores de Transcripción/metabolismoRESUMEN
Differential gene expression is the basis for cell type diversity in multicellular organisms and the driving force of development and differentiation. It is achieved by cell type-specific transcriptional enhancers, which are genomic DNA sequences that activate the transcription of their target genes. Their identification and characterization is fundamental to our understanding of gene regulation. Features that are associated with enhancer activity, such as regulatory factor binding or histone modifications can predict the location of enhancers. Nonetheless, enhancer activity can only be assessed by transcriptional reporter assays. Over the past years massively parallel reporter assays have been developed for large scale testing of enhancers. In this review we focus on the principles and applications of STARR-seq, a functional assay that quantifies enhancer strengths in complex candidate libraries and thus allows activity-based enhancer identification in entire genomes. We explain how STARR-seq works, discuss current uses and give an outlook to future applications.
Asunto(s)
Elementos de Facilitación Genéticos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Regiones Promotoras Genéticas , Mapeo Cromosómico , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Análisis de Secuencia de ADN/métodosRESUMEN
Enhancers are important cis-regulatory elements controlling cell-type specific expression patterns of genes. Furthermore, combinations of enhancers and minimal promoters are utilized to construct small, artificial promoters for gene delivery vectors. Large-scale functional screening methodology to construct genomic maps of enhancer activities has been successfully established in cultured cell lines, however, not yet applied to terminally differentiated cells and tissues in a living animal. Here, we transposed the Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) technique to the mouse brain using adeno-associated-viruses (AAV) for the delivery of a highly complex screening library tiling entire genomic regions and covering in total 3 Mb of the mouse genome. We identified 483 sequences with enhancer activity, including sequences that were not predicted by DNA accessibility or histone marks. Characterizing the expression patterns of fluorescent reporters controlled by nine candidate sequences, we observed differential expression patterns also in sparse cell types. Together, our study provides an entry point for the unbiased study of enhancer activities in organisms during health and disease.
Asunto(s)
Elementos de Facilitación Genéticos , Genómica , Animales , Ratones , Genómica/métodos , Mapeo Cromosómico/métodos , Regiones Promotoras Genéticas , EncéfaloRESUMEN
The identification of transcriptional enhancers and the quantitative assessment of enhancer activities is essential to understanding how regulatory information for gene expression is encoded in animal and human genomes. Further, it is key to understanding how sequence variants affect enhancer function. STARR-seq enables the direct and quantitative assessment of enhancer activity for millions of candidate sequences of arbitrary length and origin in parallel, allowing the screening of entire genomes and the establishment of genome-wide enhancer activity maps. In STARR-seq, the candidate sequences are cloned downstream of the core promoter into a reporter gene's transcription unit (i.e., the 3' UTR). Candidates that function as active enhancers lead to the transcription of reporter mRNAs that harbor the candidates' sequences. This direct coupling of enhancer sequence and enhancer activity in cis enables the straightforward and efficient cloning of complex candidate libraries and the assessment of enhancer activities of millions of candidates in parallel by quantifying the reporter mRNAs by deep sequencing. This article describes how to create focused and genome-wide human STARR-seq libraries and how to perform STARR-seq screens in mammalian cells, and also describes a novel STARR-seq variant (UMI-STARR-seq) that allows the accurate counting of reporter mRNAs for STARR-seq libraries of low complexity. © 2019 The Authors. Basic Protocol 1: STARR-seq plasmid library cloning Basic Protocol 2: Mammalian STARR-seq screening protocol Alternate Protocol: UMI-STARR-seq screening protocol-unique molecular identifier integration Support Protocol: Transfection of human cells using the MaxCyte STX scalable transfection system.
Asunto(s)
Elementos de Facilitación Genéticos , Técnicas Genéticas , Biblioteca Genómica , Animales , Clonación Molecular , Células HeLa , Humanos , Plásmidos , TransfecciónRESUMEN
Gene expression is controlled by enhancers that activate transcription from the core promoters of their target genes. Although a key function of core promoters is to convert enhancer activities into gene transcription, whether and how strongly they activate transcription in response to enhancers has not been systematically assessed on a genome-wide level. Here we describe self-transcribing active core promoter sequencing (STAP-seq), a method to determine the responsiveness of genomic sequences to enhancers, and apply it to the Drosophila melanogaster genome. We cloned candidate fragments at the position of the core promoter (also called minimal promoter) in reporter plasmids with or without a strong enhancer, transfected the resulting library into cells, and quantified the transcripts that initiated from each candidate for each setup by deep sequencing. In the presence of a single strong enhancer, the enhancer responsiveness of different sequences differs by several orders of magnitude, and different levels of responsiveness are associated with genes of different functions. We also identify sequence features that predict enhancer responsiveness and discuss how different core promoters are employed for the regulation of gene expression.
Asunto(s)
Emparejamiento Base/genética , Mapeo Cromosómico/métodos , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Análisis de Secuencia de ADN/métodos , Iniciación de la Transcripción Genética , Algoritmos , Animales , Drosophila melanogaster , Regiones Promotoras Genéticas/genética , Programas InformáticosRESUMEN
Phenotypic differences between closely related species are thought to arise primarily from changes in gene expression due to mutations in cis-regulatory sequences (enhancers). However, it has remained unclear how frequently mutations alter enhancer activity or create functional enhancers de novo. Here we use STARR-seq, a recently developed quantitative enhancer assay, to determine genome-wide enhancer activity profiles for five Drosophila species in the constant trans-regulatory environment of Drosophila melanogaster S2 cells. We find that the functions of a large fraction of D. melanogaster enhancers are conserved for their orthologous sequences owing to selection and stabilizing turnover of transcription factor motifs. Moreover, hundreds of enhancers have been gained since the D. melanogaster-Drosophila yakuba split about 11 million years ago without apparent adaptive selection and can contribute to changes in gene expression in vivo. Our finding that enhancer activity is often deeply conserved and frequently gained provides functional insights into regulatory evolution.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Genoma , Animales , Células Cultivadas , Drosophila/clasificación , Drosophila/crecimiento & desarrollo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Luciferasas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Genomic enhancers are important regulators of gene expression, but their identification is a challenge, and methods depend on indirect measures of activity. We developed a method termed STARR-seq to directly and quantitatively assess enhancer activity for millions of candidates from arbitrary sources of DNA, which enables screens across entire genomes. When applied to the Drosophila genome, STARR-seq identifies thousands of cell type-specific enhancers across a broad continuum of strengths, links differential gene expression to differences in enhancer activity, and creates a genome-wide quantitative enhancer map. This map reveals the highly complex regulation of transcription, with several independent enhancers for both developmental regulators and ubiquitously expressed genes. STARR-seq can be used to identify and quantify enhancer activity in other eukaryotes, including humans.