Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(4): 988-98, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544943

RESUMEN

While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos Antivirales/sangre , Citotoxicidad Celular Dependiente de Anticuerpos , Complejo Antígeno-Anticuerpo/inmunología , Ensayos Clínicos como Asunto , Diseño de Fármacos , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/sangre , Receptores Fc/inmunología
2.
PLoS Comput Biol ; 19(8): e1011295, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37566641

RESUMEN

The vaginal microbiome (VMB) is a complex microbial community that is closely tied to reproductive health. Optimal VMB communities have compositions that are commonly defined by the dominance of certain Lactobacillus spp. and can remain stable over time or transition to non-optimal states dominated by anaerobic bacteria and associated with bacterial vaginosis (BV). The ability to remain stable or undergo transitions suggests a system with either single (mono-stable) or multiple (multi-stable) equilibrium states, though factors that contribute to stability have been difficult to determine due to heterogeneity in microbial growth characteristics and inter-species interactions. Here, we use a computational model to determine whether differences in microbial growth and interaction parameters could alter equilibrium state accessibility and account for variability in community composition after menses and antibiotic therapies. Using a global uncertainty and sensitivity analysis that captures parameter sets sampled from a physiologically relevant range, model simulations predicted that 79.7% of microbial communities were mono-stable (gravitate to one composition type) and 20.3% were predicted to be multi-stable (can gravitate to more than one composition type, given external perturbations), which was not significantly different from observations in two clinical cohorts (HMP cohort, 75.2% and 24.8%; Gajer cohort, 78.1% and 21.9%, respectively). The model identified key microbial parameters that governed equilibrium state accessibility, such as the importance of non-optimal anaerobic bacteria interactions with Lactobacillus spp., which is largely understudied. Model predictions for composition changes after menses and antibiotics were not significantly different from those observed in clinical cohorts. Lastly, simulations were performed to illustrate how this quantitative framework can be used to gain insight into the development of new combinatorial therapies involving altered prebiotic and antibiotic dosing strategies. Altogether, dynamical models could guide development of more precise therapeutic strategies to manage BV.


Asunto(s)
Microbiota , Vaginosis Bacteriana , Humanos , Femenino , Vagina , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Lactobacillus
3.
PLoS Pathog ; 16(12): e1009024, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270801

RESUMEN

Despite the efficacy of antiretroviral-based pre-exposure prophylactics (PrEP) in men who have sex with men, studies in women have produced widely varying outcomes. Recent evidence demonstrates that vaginal microbial communities are associated with increased HIV acquisition risk and may impact PrEP efficacy. Here, we investigate the mechanisms underlying how vaginal bacteria alter PrEP drug levels and impact HIV infection rates ex vivo. Using cervicovaginal lavages (CVLs) from women with or without bacterial vaginosis (BV), we identified microbial metabolism of PrEP drugs in BV samples through LC-MS/MS analysis of soluble drug levels and metabolite formation in dual T-cell cultures. CVL samples were assessed for microbiome analysis using sequencing of bacterial 16S rRNA genes. We also observed non-Lactobacillus bacteria that are associated with BV may potentially impact PrEP efficacy through increased HIV infection rates in co-cultures containing Lactobacillus or BV bacteria, PrEP drugs, CEM-GFP cells, and HIV-1LAI virus. Finally, we used these data to develop a novel predictive mathematical simulation modeling system to predict these drug interactions for future trials. These studies demonstrate how dysbiotic vaginal microbiota may impact PrEP drugs and provides evidence linking vaginal bacteria to PrEP efficacy in women.


Asunto(s)
Infecciones por VIH/transmisión , Microbiota/fisiología , Profilaxis Pre-Exposición/métodos , Vagina/microbiología , Adulto , Fármacos Anti-VIH/uso terapéutico , Antirretrovirales/uso terapéutico , Cromatografía Liquida/métodos , Disbiosis/microbiología , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Microbiota/genética , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem/métodos , Resultado del Tratamiento , Vagina/efectos de los fármacos , Vaginosis Bacteriana/complicaciones , Vaginosis Bacteriana/tratamiento farmacológico
4.
Am J Respir Crit Care Med ; 199(9): 1127-1138, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30789747

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) causes considerable global morbidity and mortality, and its mechanisms of disease progression are poorly understood. Recent observational studies have reported associations between lung dysbiosis, mortality, and altered host defense gene expression, supporting a role for lung microbiota in IPF. However, the causal significance of altered lung microbiota in disease progression is undetermined. Objectives: To examine the effect of microbiota on local alveolar inflammation and disease progression using both animal models and human subjects with IPF. Methods: For human studies, we characterized lung microbiota in BAL fluid from 68 patients with IPF. For animal modeling, we used a murine model of pulmonary fibrosis in conventional and germ-free mice. Lung bacteria were characterized using 16S rRNA gene sequencing with novel techniques optimized for low-biomass sample load. Microbiota were correlated with alveolar inflammation, measures of pulmonary fibrosis, and disease progression. Measurements and Main Results: Disruption of the lung microbiome predicts disease progression, correlates with local host inflammation, and participates in disease progression. In patients with IPF, lung bacterial burden predicts fibrosis progression, and microbiota diversity and composition correlate with increased alveolar profibrotic cytokines. In murine models of fibrosis, lung dysbiosis precedes peak lung injury and is persistent. In germ-free animals, the absence of a microbiome protects against mortality. Conclusions: Our results demonstrate that lung microbiota contribute to the progression of IPF. We provide biological plausibility for the hypothesis that lung dysbiosis promotes alveolar inflammation and aberrant repair. Manipulation of lung microbiota may represent a novel target for the treatment of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/microbiología , Inflamación/microbiología , Pulmón/microbiología , Microbiota/fisiología , Anciano , Animales , Líquido del Lavado Bronquioalveolar/microbiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Vida Libre de Gérmenes , Humanos , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/genética , Persona de Mediana Edad , Alveolos Pulmonares/microbiología , Alveolos Pulmonares/patología , ARN Ribosómico 16S/genética
5.
Am J Respir Crit Care Med ; 198(10): 1312-1321, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29878854

RESUMEN

RATIONALE: Hematopoietic cell transplant (HCT) is a common treatment for hematological neoplasms and autoimmune disorders. Among HCT recipients, pulmonary complications are common, morbid, and/or lethal, and they have recently been associated with gut dysbiosis. The role of lung microbiota in post-HCT pulmonary complications is unknown. OBJECTIVES: To investigate the role of lung microbiota in post-HCT pulmonary complications using animal modeling and human BAL fluid. METHODS: For animal modeling, we used an established murine model of HCT with and without postengraftment herpes virus infection. For human studies, we characterized lung microbiota in BAL fluid from 43 HCT recipients. Lung bacteria were characterized using 16S ribosomal RNA gene sequencing and were compared with lung histology (murine) and with alveolar inflammation and pulmonary function testing (human). MEASUREMENTS AND MAIN RESULTS: Both HCT and viral infection independently altered the composition of murine lung microbiota, but they had no effect on lung microbial diversity. By contrast, combined HCT and viral infection profoundly altered lung microbiota, decreasing community diversity with an associated pneumonitis. Among human HCT recipients, increased relative abundance of the Proteobacteria phylum was associated with impaired pulmonary function, and lung microbiota were significantly associated with alveolar concentrations of inflammatory cytokines. CONCLUSIONS: In animal models and human subjects, lung dysbiosis is a prominent feature of HCT. Lung dysbiosis is correlated with histologic, immunologic, and physiologic features of post-HCT pulmonary complications. Our findings suggest the lung microbiome may be an unappreciated target for the prevention and treatment of post-HCT pulmonary complications.


Asunto(s)
Disbiosis/epidemiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Inflamación/epidemiología , Enfermedades Pulmonares/epidemiología , Complicaciones Posoperatorias/epidemiología , Animales , Comorbilidad , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal , Humanos , Inflamación/microbiología , Pulmón/microbiología , Enfermedades Pulmonares/microbiología , Masculino , Ratones , Persona de Mediana Edad , Complicaciones Posoperatorias/microbiología
6.
Immunology ; 153(3): 279-289, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29139548

RESUMEN

Antibodies are highly functional glycoproteins capable of providing immune protection through multiple mechanisms, including direct pathogen neutralization and the engagement of their Fc portions with surrounding effector immune cells that induce anti-pathogenic responses. Small modifications to multiple antibody biophysical features induced by vaccines can significantly alter functional immune outcomes, though it is difficult to predict which combinations confer protective immunity. In order to give insight into the highly complex and dynamic processes that drive an effective humoral immune response, here we discuss recent applications of 'Systems Serology', a new approach that uses data-driven (also called 'machine learning') computational analysis and high-throughput experimental data to infer networks of important antibody features associated with protective humoral immunity and/or Fc functional activity. This approach offers the ability to understand humoral immunity beyond single correlates of protection, assessing the relative importance of multiple biophysical modifications to antibody features with multivariate computational approaches. Systems Serology has the exciting potential to help identify novel correlates of protection from infection and may generate a more comprehensive understanding of the mechanisms behind protection, including key relationships between specific Fc functions and antibody biophysical features (e.g. antigen recognition, isotype, subclass and/or glycosylation events). Reviewed here are some of the experimental and computational technologies available for Systems Serology research and evidence that the application has broad relevance to multiple different infectious diseases including viruses, bacteria, fungi and parasites.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Inmunidad Humoral/inmunología , Humanos , Serología/métodos , Vacunas/inmunología
7.
Respirology ; 23(11): 993-1003, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30105802

RESUMEN

The proteome is the study of the protein content of a definable component of an organism in biology. However, the tissue-specific expression of proteins and the varied post-translational modifications, splice variants and protein-protein complexes that may form, make the study of protein a challenging yet vital tool in answering many of the unanswered questions in medicine and biology to date. Indeed, the spatial, temporal and functional composition of proteins in the human body has proven difficult to elucidate for many years. Given the effect of microRNA and epigenetic regulation on silencing and enhancing gene transcription, the study of protein arguably provides more accurate information on homeostasis and perturbation in health and disease. There have been significant advances in the field of proteomics in recent years, with new technologies and platforms available to the research community. In this review, we briefly discuss some of these new technologies and developments in the context of respiratory disease. We also discuss the types of data science approaches to analyses and interpretation of the large volumes of data generated in proteomic studies. We discuss the application of these technologies with regard to respiratory disease and highlight the potential for proteomics in generating major advances in the understanding of respiratory pathophysiology into the future.


Asunto(s)
Investigación Biomédica , Proteómica , Enfermedades Respiratorias , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Epigénesis Genética , Humanos , Invenciones , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Proteómica/tendencias , Enfermedades Respiratorias/genética , Enfermedades Respiratorias/metabolismo , Enfermedades Respiratorias/fisiopatología
8.
Biotechnol Bioeng ; 114(9): 2085-2095, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28322442

RESUMEN

The development of resistance to targeted therapeutics is a challenging issue for the treatment of cancer. Cancers that have mutations in BRCA, a DNA repair protein, have been treated with poly(ADP-ribose) polymerase (PARP) inhibitors, which target a second DNA repair mechanism with the aim of inducing synthetic lethality. While these inhibitors have shown promise clinically, the development of resistance can limit their effectiveness as a therapy. This study investigated mechanisms of resistance in BRCA-mutated cancer cells (HCC1937) to Olaparib (AZD2281) using TRACER, a technique for measuring dynamics of transcription factor (TF) activity in living cells. TF activity was monitored in the parental HCC1937 cell line and two distinct resistant cell lines, one with restored wild-type BRCA1 and one with acquired resistance independent of BRCA1 for 48 h during treatment with Olaparib. Partial least squares discriminant analysis (PLSDA) was used to categorize the three cell types based on TF activity, and network analysis was used to investigate the mechanism of early response to Olaparib in the study cells. NOTCH signaling was identified as a common pathway linked to resistance in both Olaparib-resistant cell types. Western blotting confirmed upregulation of NOTCH protein, and sensitivity to Olaparib was restored through co-treatment with a gamma secretase inhibitor. The identification of NOTCH signaling as a common pathway contributing to PARP inhibitor resistance by TRACER indicates the efficacy of transcription factor dynamics in identifying targets for intervention in treatment-resistant cancer and provides a new method for determining effective strategies for directed chemotherapy. Biotechnol. Bioeng. 2017;114: 2085-2095. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ftalazinas/administración & dosificación , Piperazinas/administración & dosificación , Análisis de Matrices Tisulares/métodos , Factores de Transcripción/metabolismo , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/patología , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida/métodos , Teoría de Sistemas
9.
J Virol ; 89(17): 8793-805, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085144

RESUMEN

UNLABELLED: The variable infectivity and transmissibility of HIV/SHIV has been recently associated with the menstrual cycle, with particular susceptibility observed during the luteal phase in nonhuman primate models and ex vivo human explant cultures, but the mechanism is poorly understood. Here, we performed an unbiased, mass spectrometry-based proteomic analysis to better understand the mucosal immunological processes underpinning this observed susceptibility to HIV infection. Cervicovaginal lavage samples (n = 19) were collected, characterized as follicular or luteal phase using days since last menstrual period, and analyzed by tandem mass spectrometry. Biological insights from these data were gained using a spectrum of computational methods, including hierarchical clustering, pathway analysis, gene set enrichment analysis, and partial least-squares discriminant analysis with LASSO feature selection. Of the 384 proteins identified, 43 were differentially abundant between phases (P < 0.05, ≥2-fold change). Cell-cell adhesion proteins and antiproteases were reduced, and leukocyte recruitment (interleukin-8 pathway, P = 1.41E-5) and extravasation proteins (P = 5.62E-4) were elevated during the luteal phase. LASSO/PLSDA identified a minimal profile of 18 proteins that best distinguished the luteal phase. This profile included cytoskeletal elements and proteases known to be involved in cellular movement. Gene set enrichment analysis associated CD4(+) T cell and neutrophil gene set signatures with the luteal phase (P < 0.05). Taken together, our findings indicate a strong association between proteins involved in tissue remodeling and leukocyte infiltration with the luteal phase, which may represent potential hormone-associated mechanisms of increased susceptibility to HIV. IMPORTANCE: Recent studies have discovered an enhanced susceptibility to HIV infection during the progesterone-dominant luteal phase of the menstrual cycle. However, the mechanism responsible for this enhanced susceptibility has not yet been determined. Understanding the source of this vulnerability will be important for designing efficacious HIV prevention technologies for women. Furthermore, these findings may also be extrapolated to better understand the impact of exogenous hormone application, such as the use of hormonal contraceptives, on HIV acquisition risk. Hormonal contraceptives are the most widely used contraceptive method in sub-Saharan Africa, the most HIV-burdened area of the world. For this reason, research conducted to better understand how hormones impact host immunity and susceptibility factors important for HIV infection is a global health priority.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Epitelio/inmunología , Fase Folicular/inmunología , Infecciones por VIH/inmunología , Fase Luteínica/inmunología , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Moléculas de Adhesión Celular/metabolismo , Femenino , Fase Folicular/metabolismo , Perfilación de la Expresión Génica , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Interleucina-8/inmunología , Fase Luteínica/metabolismo , Persona de Mediana Edad , Neutrófilos/inmunología , Espectrometría de Masas en Tándem , Adulto Joven
10.
Sex Transm Infect ; 92(3): 186-93, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26511781

RESUMEN

BACKGROUND: Untreated sexually transmitted infections (STIs) and bacterial vaginosis (BV) cause genital inflammation and increase the risk of HIV infection. WHO-recommended syndromic STI and BV management is severely limited as many women with asymptomatic infections go untreated. The purpose of this cross-sectional study was to evaluate genital cytokine profiles as a biomarker of STIs and BV to identify women with asymptomatic, treatable infections. METHODS: Concentrations of 42 cytokines in cervicovaginal lavages from 227 HIV-uninfected women were measured using Luminex. All women were screened for BV by microscopy and STIs using molecular assays. Multivariate analyses were used to identify cytokine profiles associated with STIs/BV. RESULTS: A multivariate profile of seven cytokines (interleukin (IL)-1α, IL-1ß, tumour necrosis factor-ß, IL-4, fractalkine, macrophage-derived chemokine, and interferon-γ) most accurately predicted the presence of a treatable genital condition, with 77% classification accuracy and 75% cross-validation accuracy (sensitivity 72%; specificity 81%, positive predictive value (PPV) 86%, negative predictive value (NPV) 64%). Concomitant increased IL-1ß and decreased IP-10 concentrations predicted the presence of a treatable genital condition without a substantial reduction in predictive value (sensitivity 77%, specificity 72%, PPV 82% and NPV 65%), correctly classifying 75% of the women. This approach performed substantially better than clinical signs (sensitivity 19%, specificity 92%, PPV 79% and NPV 40%). CONCLUSIONS: Supplementing syndromic management with an assessment of IL-1ß and IP-10 as biomarkers of genital inflammation may improve STI/BV management for women, enabling more effective treatment of asymptomatic infections and potentially reducing their risk of HIV infection.


Asunto(s)
Cuello del Útero/química , Citocinas/análisis , Enfermedades de Transmisión Sexual/diagnóstico , Vagina/química , Vaginosis Bacteriana/diagnóstico , Adolescente , Biomarcadores/análisis , Proteínas de Ciclo Celular/genética , Quimiocina CXCL10/análisis , Estudios Transversales , Femenino , Infecciones por VIH/etiología , Infecciones por VIH/prevención & control , Humanos , Interleucina-1beta/análisis , Modelos Logísticos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Curva ROC , Sensibilidad y Especificidad , Enfermedades de Transmisión Sexual/complicaciones , Irrigación Terapéutica , Vaginosis Bacteriana/complicaciones , Adulto Joven
11.
Clin Infect Dis ; 61(2): 260-9, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25900168

RESUMEN

BACKGROUND: Women in Africa, especially young women, have very high human immunodeficiency virus (HIV) incidence rates that cannot be fully explained by behavioral risks. We investigated whether genital inflammation influenced HIV acquisition in this group. METHODS: Twelve selected cytokines, including 9 inflammatory cytokines and chemokines (interleukin [IL]-1α, IL-1ß, IL-6, tumor necrosis factor-α, IL-8, interferon-γ inducible protein-10 [IP-10], monocyte chemoattractant protein-1, macrophage inflammatory protein [MIP]-1α, MIP-1ß), hematopoietic IL-7, and granulocyte macrophage colony-stimulating factor, and regulatory IL-10 were measured prior to HIV infection in cervicovaginal lavages from 58 HIV seroconverters and 58 matched uninfected controls and in plasma from a subset of 107 of these women from the Centre for the AIDS Programme of Research in South Africa 004 tenofovir gel trial. RESULTS: HIV seroconversion was associated with raised genital inflammatory cytokines (including chemokines MIP-1α, MIP-1ß, and IP-10). The risk of HIV acquisition was significantly higher in women with evidence of genital inflammation, defined by at least 5 of 9 inflammatory cytokines being raised (odds ratio, 3.2; 95% confidence interval, 1.3-7.9; P = .014). Genital cytokine concentrations were persistently raised (for about 1 year before infection), with no readily identifiable cause despite extensive investigation of several potential factors, including sexually transmitted infections and systemic cytokines. CONCLUSIONS: Elevated genital concentrations of HIV target cell-recruiting chemokines and a genital inflammatory profile contributes to the high risk of HIV acquisition in these African women.


Asunto(s)
Quimiocinas/análisis , Citocinas/análisis , Enfermedades de los Genitales Femeninos/diagnóstico , Genitales Femeninos/inmunología , Genitales Femeninos/virología , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , África , Cuello del Útero/inmunología , Quimiocina CCL2/análisis , Quimiocina CCL2/sangre , Quimiocina CCL2/inmunología , Quimiocinas/sangre , Quimiocinas/genética , Quimiocinas/inmunología , Citocinas/sangre , Citocinas/genética , Citocinas/inmunología , Susceptibilidad a Enfermedades , Femenino , Infecciones por VIH/virología , Humanos , Inflamación/diagnóstico , Interferón gamma/análisis , Interferón gamma/sangre , Interferón gamma/inmunología , Interleucina-10/análisis , Interleucina-10/inmunología , Interleucina-6/análisis , Interleucina-6/sangre , Interleucina-6/inmunología , Interleucina-8/análisis , Interleucina-8/sangre , Interleucina-8/inmunología , Enfermedades de Transmisión Sexual , Sudáfrica , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología , Cervicitis Uterina/diagnóstico , Vagina/inmunología , Ducha Vaginal , Vaginitis/diagnóstico , Adulto Joven
12.
Trends Microbiol ; 31(4): 356-368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36272885

RESUMEN

The vaginal microbiome (VMB) is critical to female reproductive health; however, the mechanisms associated with optimal and non-optimal states remain poorly understood due to the complex community structure and dynamic nature. Quantitative systems biology techniques applied to the VMB have improved understanding of community composition and function using primarily statistical methods. In contrast, fewer mechanistic models that use a priori knowledge of VMB features to develop predictive models have been implemented despite their use for microbiomes at other sites, including the gastrointestinal tract. Here, we explore systems biology approaches that have been applied in the VMB, highlighting successful techniques and discussing new directions that hold promise for improving understanding of health and disease.


Asunto(s)
Microbiota , Biología de Sistemas , Femenino , Humanos , Vagina , Salud de la Mujer , Tracto Gastrointestinal
13.
Front Immunol ; 14: 1183727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600816

RESUMEN

Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.


Asunto(s)
Vacunas , Poblaciones Vulnerables , Adulto , Niño , Anciano , Humanos , Vacunación , Anticuerpos Neutralizantes , Inmunización
14.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217548

RESUMEN

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Progresión de la Enfermedad , Fumar/efectos adversos , Volumen Espiratorio Forzado , Lavado Broncoalveolar , Biomarcadores
15.
Front Immunol ; 13: 820148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273603

RESUMEN

Fc-mediated immune functions have been correlated with protection in the RV144 HIV vaccine trial and are important for immunity to a range of pathogens. IgG antibodies (Abs) that form complexes with Fc receptors (FcRs) on innate immune cells can activate Fc-mediated immune functions. Genetic variation in both IgGs and FcRs have the capacity to alter IgG-FcR complex formation via changes in binding affinity and concentration. A growing challenge lies in unraveling the importance of multiple variations, especially in the context of vaccine trials that are conducted in homogenous genetic populations. Here we use an ordinary differential equation model to quantitatively assess how IgG1 allotypes and FcγR polymorphisms influence IgG-FcγRIIIa complex formation in vaccine-relevant settings. Using data from the RV144 HIV vaccine trial, we map the landscape of IgG-FcγRIIIa complex formation predicted post-vaccination for three different IgG1 allotypes and two different FcγRIIIa polymorphisms. Overall, the model illustrates how specific vaccine interventions could be applied to maximize IgG-FcγRIIIa complex formation in different genetic backgrounds. Individuals with the G1m1,17 and G1m1,3 allotypes were predicted to be more responsive to vaccine adjuvant strategies that increase antibody FcγRIIIa affinity (e.g. glycosylation modifications), compared to the G1m-1,3 allotype which was predicted to be more responsive to vaccine boosting regimens that increase IgG1 antibody titers (concentration). Finally, simulations in mixed-allotype populations suggest that the benefit of boosting IgG1 concentration versus IgG1 affinity may be dependent upon the presence of the G1m-1,3 allotype. Overall this work provides a quantitative tool for rationally improving Fc-mediated functions after vaccination that may be important for assessing vaccine trial results in the context of under-represented genetic populations.


Asunto(s)
Vacunas contra el SIDA , Receptores de IgG , Humanos , Inmunoglobulina G , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Vacunación
16.
Nat Commun ; 13(1): 2774, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589689

RESUMEN

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Humanos , Inmunidad , Inmunoglobulina G , Inmunoglobulina M , Sistema Respiratorio , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus
17.
Acta Biomater ; 132: 313-324, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33766798

RESUMEN

Synthetic matrices offer a high degree of control and tunability for mimicking extracellular matrix functions of native tissue, allowing the study of disease and development in vitro. In this study, we functionalized degradable poly(ethylene glycol) hydrogels with extracellular matrix (ECM)-sequestering peptides aiming to recapitulate the native ECM composition for culture and maturation of ovarian follicular organoids. We hypothesized that ECM-sequestering peptides would facilitate deposition and retention of cell-secreted ECM molecules, thereby recreating cell-matrix interactions in otherwise bioinert PEG hydrogels. Specifically, heparin-binding peptide from antithrombin III (HBP), heparan sulfate binding peptide derived from laminin (AG73), basement membrane binder peptide (BMB), and heparan sulfate binding region of placental growth factor 2 (RRR) tethered to a PEG hydrogel significantly improved follicle survival, growth and maturation compared to PEG-Cys, a mechanically similar but biologically inert control. Immunohistochemical analysis of the hydrogel surrounding cultured follicles confirmed sequestration and retention of laminin, collagen I, perlecan, and fibronectin in ECM-sequestering hydrogels but not in bioinert PEG-Cys hydrogels. The media from follicles cultured in PEG-AG73, PEG-BMB, and PEG-RRR also had significantly higher concentrations of factors known to regulate follicle development compared to PEG-Cys. PEG-AG73 and PEG-BMB were the most beneficial for promoting follicle maturation, likely because AG73 and BMB mimic basement membrane interactions which are crucial for follicle development. Here we have shown that functionalizing PEG with ECM-sequestering peptides allows cell-secreted ECM to be retained within the hydrogels, restoring critical cell-matrix interactions and promoting healthy organoid development in a fully synthetic culture system. STATEMENT OF SIGNIFICANCE: Here we present a novel approach for sequestering and retaining cell-secreted extracellular matrix in a fully synthetic material for organoid culture. We have engineered a biomimetic poly(ethylene glycol) hydrogel functionalized with extracellular matrix-binding peptides to recapitulate the ovarian microenvironment. Incorporation of these peptides allows ovarian follicles to recreate their native matrix with the sequestered ECM that subsequently binds growth factors, facilitating follicle maturation. The novel design resulted in improved outcomes of folliculogenesis, potentially developing a fertility preservation option for young women undergoing sterilizing treatments for cancer. The fully synthetic and modular nature of this biomimetic material holds promise for other tissue engineering applications as it allows encapsulated cells to rebuild their native microenvironments in vitro.


Asunto(s)
Proteínas de la Matriz Extracelular , Preservación de la Fertilidad , Animales , Matriz Extracelular , Femenino , Humanos , Hidrogeles/farmacología , Ratones , Oocitos , Factor de Crecimiento Placentario , Polietilenglicoles/farmacología
18.
Cell Rep Med ; 2(9): 100386, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622227

RESUMEN

Immunoglobulin G (IgG) antibodies that activate Fc-mediated immune functions have been correlated with vaccine efficacy, but it is difficult to unravel the relative roles of multiple IgG and Fc receptor (FcR) features that have the capacity to influence IgG-FcR complex formation but vary on a personalized basis. Here, we develop an ordinary differential-equation model to determine how personalized variability in IgG subclass concentrations and binding affinities influence IgG-FcγRIIIa complex formation and validate it with samples from the HIV RV144 vaccine trial. The model identifies individuals who are sensitive, insensitive, or negatively affected by increases in HIV-specific IgG1, which is validated with the addition of HIV-specific IgG1 monoclonal antibodies to vaccine samples. IgG1 affinity to FcγRIIIa is also prioritized as the most influential parameter for dictating activation broadly across a population. Overall, this work presents a quantitative tool for evaluating personalized differences underlying FcR activation, which is relevant to ongoing efforts to improve vaccine efficacy.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Medicina de Precisión , Receptores Fc/metabolismo , Análisis de Sistemas , Vacunación , Humanos , Inmunoglobulina G/metabolismo , Modelos Biológicos , Receptores de IgG/metabolismo , Reproducibilidad de los Resultados , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
19.
Nat Commun ; 12(1): 2037, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795692

RESUMEN

The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity. Age-dependent analysis of COVID-19 patients, confirms elevated class-switched antibodies in elderly, while children have stronger Fc responses which we demonstrate are functionally different. These insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Niño , Preescolar , Reacciones Cruzadas/inmunología , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Persona de Mediana Edad , Receptores de IgG/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
20.
Sci Adv ; 6(37)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917680

RESUMEN

Fibrosis, characterized by aberrant tissue scarring from activated myofibroblasts, is often untreatable. Although the extracellular matrix becomes increasingly stiff and fibrous during disease progression, how these physical cues affect myofibroblast differentiation in 3D is poorly understood. Here, we describe a multicomponent hydrogel that recapitulates the 3D fibrous structure of interstitial tissue regions where idiopathic pulmonary fibrosis (IPF) initiates. In contrast to findings on 2D hydrogels, myofibroblast differentiation in 3D was inversely correlated with hydrogel stiffness but positively correlated with matrix fibers. Using a multistep bioinformatics analysis of IPF patient transcriptomes and in vitro pharmacologic screening, we identify matrix metalloproteinase activity to be essential for 3D but not 2D myofibroblast differentiation. Given our observation that compliant degradable 3D matrices amply support fibrogenesis, these studies demonstrate a departure from the established relationship between stiffness and myofibroblast differentiation in 2D, and provide a new 3D model for studying fibrosis and identifying antifibrotic therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA