Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ital J Food Saf ; 10(1): 8947, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33907685

RESUMEN

In Sardinia (Italy), bivalve molluscs production plays an important role in the trade balance. Diarrhoetic shellfish poisoning (DSP), an intoxication caused by the ingestion of bivalve molluscs that have accumulated high levels of Okadaic acid (OA), may represent a serious risk for the public health and a remarkable economic loss for the producers. Aim of this work was to improve knowledge about the repeatability of OA accumulation phenomena in various seasons trying to understand whether or not there was a trend. Also, the interaction between toxic algae and OA accumulation was examined. In this study, data of lipophilic toxins, water temperature and abundance of DSP-producing microalgal species were collected in a four-year period (2015-2018) in coastal production areas of Sardinia. Several episodes of OA positive values (>160 eq µgAO/Kg pe, Reg 853/04) were recorded during the study period in different production areas of Sardinia and in different seasons. A seasonal repeatability of OA accumulation in molluscs was observed in some production areas; moreover, different temporal gaps between the presence of toxic algae and OA accumulation were reported. Toxicity was observed almost exclusively in Mytilus galloprovincialis Lamark (99%), being this matrix the most abundant species bred in Sardinia.

2.
J Food Prot ; 84(9): 1549-1554, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33956961

RESUMEN

ABSTRACT: In the present study, we investigated the presence, seasonal distribution, and biomolecular characteristics of Vibrio parahaemolyticus and Vibrio vulnificus in samples of bivalve mollusks (Mytilus galloprovincialis, Crassostrea gigas, and Ruditapes decussatus) harvested and marketed in Sardinia (Italy) between 2017 and 2018. A total of 435 samples were submitted for qualitative determination of Vibrio spp., V. parahaemolyticus, and V. vulnificus. Potentially enteropathogenic isolates were detected with biomolecular methods. The overall prevalence of Vibrio spp. was 7.6%. The highest Vibrio prevalence was found in R. decussatus (8.3%). The prevalences of V. parahaemolyticus and V. vulnificus were 2.7 and 4.8%, respectively. Higher prevalences of V. parahaemolyticus and V. vulnificus were found in R. decussatus (4.2%) and C. gigas (6.2%), respectively. Only two pathogenic V. parahaemolyticus strains were recovered (genotypes: tdh- and trh+; tdh+ and trh-), both from M. galloprovincialis. None of the isolates were tdh+ and trh+. Pathogenic Vibrio infections are often underestimated, and human infections are increasing in Europe. European data on the true distribution of Vibrionaceae are scarce, and the results of the present study highlight the need of constant monitoring to update the distribution of pathogenic vibrios.


Asunto(s)
Mytilus , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Humanos , Italia , Estaciones del Año , Mariscos , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética
3.
Toxicon ; 174: 48-56, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31989929

RESUMEN

Paralytic shellfish poisoning is a human intoxication syndrome associated with the consumption of seafood that has been contaminated with paralytic shellfish toxins (PSTs), a group of natural neurotoxic alkaloids produced by marine dinoflagellates, including some Alexandrium species. This study presents findings of PSTs in mussels (Mytilus galloprovincialis) during 2018-2019 in several mollusc production areas of Sardinia (Italy, western Mediterranean). Investigations of the presence and abundance of PST-producing microalgal species in marine water and of the toxins associated with shellfish were carried out concomitantly. Overall, the results suggested a spatio-temporal expansion of Alexandriumpacificum and Alexandriumminutum in recent years, with an increasing number of PSTs present in molluscs and increased occurrences of toxicity cases. Liquid chromatography with fluorescence detection determined the toxin profile to be composed primarily of the carbamate gonyautoxin-5 and N-sulphocarbamoyltoxins 1 and 2. The study highlights the potential high risk to consumers of poisoning by bivalve molluscs bred in Sardinia, where shellfish production is a very important industrial sector. For this reason, routine monitoring is strongly recommended in order to mitigate any harm to human health as well as negative socio-economic consequences.


Asunto(s)
Acuicultura , Dinoflagelados , Toxinas Marinas/toxicidad , Moluscos , Animales , Humanos , Italia , Mytilus , Mariscos , Intoxicación por Mariscos
4.
J Food Prot ; 82(9): 1501-1511, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31411509

RESUMEN

Calich Lagoon is a Mediterranean coastal lagoon located along the northwestern coast of Sardinia (Italy). The connection to marine and fresh water determines the high productivity of this coastal lagoon. Despite its great potential and the presence of natural beds of bivalve mollusks (Mytilus galloprovincialis), the lagoon has not yet been classified for shellfish production. In this study, through a multidisciplinary approach, the presence of several bacterial pathogens (Escherichia coli, Salmonella spp., and Vibrio spp.) and viral pathogens (hepatitis A virus and norovirus genogroups I and II) was evaluated from March 2017 to February 2018. In addition, phytoplankton composition in lagoon waters and associated algal biotoxins (paralytic and diarrhetic shellfish poisoning) in mussels were also monitored. The aim of this study was to provide useful data to improve knowledge about their seasonal presence and to assess the potential risk for public health, as well as to provide input for future conservation and management strategies. In mussels, Salmonella spp. were found in spring, along with E. coli, but Salmonella spp. were not found in autumn or winter, even though E. coli was detected in these seasons. Vibrio parahaemolyticus was found in autumn and winter, but not in spring. Norovirus genogroups I and II were found in winter samples. None of the bacteria were found in summer. Algal biotoxins have never been detected in mussel samples. Among potentially harmful phytoplankton, only Pseudo-nitzschia spp. were present, mainly in summer. The results showed that a possible bacterial and viral contamination, together with the presence of potentially toxic microalgae, is a real problem. Therefore, the development of natural resource management strategies is necessary to ensure the good quality of waters and guarantee the protection of consumers.


Asunto(s)
Bivalvos , Escherichia coli , Toxinas Marinas , Fitoplancton , Agua de Mar , Animales , Bivalvos/química , Bivalvos/microbiología , Bivalvos/virología , Italia , Toxinas Marinas/análisis , Mar Mediterráneo , Fitoplancton/química , Alimentos Marinos/análisis , Alimentos Marinos/microbiología , Alimentos Marinos/virología , Agua de Mar/química , Agua de Mar/microbiología , Agua de Mar/virología
5.
J Vet Res ; 62(2): 137-144, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30364879

RESUMEN

INTRODUCTION: Diarrhoetic shellfish poisoning (DSP), an alimentary intoxication known to lead to intestinal symptoms, and caused by toxins produced by some dinoflagellates (including several Dinophysis), represents a serious threat to public health. The aim of this paper was to provide information about the occurrence and abundance of potentially toxic harmful algal species causing DSP, and the associated concentration of okadaic acid (OA) toxins. The departing assumption was that in the study area there was an increase in the presence both of Dinophysis species and OA and its derivates that could result in a risk to the health of seafood consumers. MATERIAL AND METHODS: During 2015-2016, water and shellfish samples were collected in the Mediterranean area (Sardinia, Italy). Dinophysis cells were counted according to Utermöhl's method from water samples, while mass spectrometry was used to identify lipophilic toxins in molluscs. RESULTS: A total of 46 non-compliant samples of Mytilus galloprovincialis were observed. Their non-compliance concerned their OA levels above the legal limit. Among toxic dinoflagellates, D. acuminata and D. sacculus were the species found mostly during DSP events. CONCLUSION: No cases of human intoxication have been reported, but continuous surveillance of toxic phytoplankton is necessary to predict and prevent its harmful effects on human health.

7.
Ital J Food Saf ; 6(4): 7015, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29564241

RESUMEN

This work reports the first communication relating to the presence of yessotoxins in Mytilus galloprovincialis from coastal mussel farms (Sardinia, western Mediterranean) detected during 2008 and 2013 through a monitoring programme. The paper emphasizes how the changes both in yessotoxin permitted limits and used methods, established by legislation, have influenced the interpretation of the obtained results. Consequently, the samples that resulted negative during 2008 would have been positive until August 2013 and negative from September 2013 up to now, and the samples that were positive in 2013 would have been positive in 2008 and negative nowadays, according to Regulation currently in force. Regular monitoring of biotoxins demonstrated that, although yessotoxins have been rarely present in the past in Sardinia, they may cause toxicity in shellfish. So, it's important to keep up on legislation's changing and laboratory methods.

8.
Ital J Food Saf ; 5(4): 6095, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28058244

RESUMEN

Sardinia (Italy, north-western Mediterranean) is a commercially important producer of edible bivalve molluscs. Since the early 2000s, it was subjected to recurring cases of mussel farm closures due to toxic algal poison. Here, we present the studies on toxin concentrations and the associated potentially toxic phytoplankton distribution and abundances carried out by a regular monitoring programme in Sardinian shellfish areas, from January to May 2015. Diarrheic shellfish poisoning (DSP) toxins were detected in several bivalve molluscs samples, while paralytic shellfish poisoning (PSP) and paralytic shellfish poisoning toxins were present just once, without exceeding the legal limits. Potentially toxic algal species have been constantly present. Pseudo-nitzschia species were present during the entire study often with high abundances, while Dinophysis species reached high densities sporadically. Among PSP phytoplankton, only Alexandrium minutum Halim was found. The data obtained in this study showed an increase in the DSP toxicity in mussels in Sardinia. No clear relation between the occurrence of toxins in shellfish and the presence of potentially toxic algal species was found, although a slight correlation between DSP toxins and Dinophysis species could be supported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA