Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 629(8013): 843-850, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658746

RESUMEN

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.


Asunto(s)
Evolución Molecular , Genes de Plantas , Genómica , Magnoliopsida , Filogenia , Fósiles , Genes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/clasificación , Proteínas Nucleares/genética
2.
Syst Biol ; 69(3): 445-461, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589325

RESUMEN

C$_{4}$ photosynthesis is a complex trait that sustains fast growth and high productivity in tropical and subtropical conditions and evolved repeatedly in flowering plants. One of the major C$_{4}$ lineages is Andropogoneae, a group of $\sim $1200 grass species that includes some of the world's most important crops and species dominating tropical and some temperate grasslands. Previous efforts to understand C$_{4}$ evolution in the group have compared a few model C$_{4}$ plants to distantly related C$_{3}$ species so that changes directly responsible for the transition to C$_{4}$ could not be distinguished from those that preceded or followed it. In this study, we analyze the genomes of 66 grass species, capturing the earliest diversification within Andropogoneae as well as their C$_{3}$ relatives. Phylogenomics combined with molecular dating and analyses of protein evolution show that many changes linked to the evolution of C$_{4}$ photosynthesis in Andropogoneae happened in the Early Miocene, between 21 and 18 Ma, after the split from its C$_{3}$ sister lineage, and before the diversification of the group. This initial burst of changes was followed by an extended period of modifications to leaf anatomy and biochemistry during the diversification of Andropogoneae, so that a single C$_{4}$ origin gave birth to a diversity of C$_{4}$ phenotypes during 18 million years of speciation events and migration across geographic and ecological spaces. Our comprehensive approach and broad sampling of the diversity in the group reveals that one key transition can lead to a plethora of phenotypes following sustained adaptation of the ancestral state. [Adaptive evolution; complex traits; herbarium genomics; Jansenelleae; leaf anatomy; Poaceae; phylogenomics.].


Asunto(s)
Adaptación Fisiológica/genética , Fotosíntesis/genética , Poaceae/clasificación , Poaceae/genética , Biodiversidad , Evolución Biológica , Especificidad de la Especie
3.
Ticks Tick Borne Dis ; 6(1): 63-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25301324

RESUMEN

In this study, we focused on the molecular detection of Coxiella-like bacteria using a PCR technique to identify Coxiella 16S rRNA sequences in Haemaphysalis tick samples (105 adults, 8 nymph pools and 19 larval pools). Seven Haemaphysalis species obtained from 5 locations in Thailand were evaluated in this work. Coxiella endosymbionts could be detected in samples representing all 3 growth stages examined. The results also revealed that only 4 of 7 tick species were positive for Coxiella-like endosymbiont: Haemaphysalis hystricis, Haemaphysalis lagrangei, Haemaphysalis obesa, and Haemaphysalis shimoga. Haemaphysalis shimoga demonstrated the highest percentage of Coxiella-like positive samples (58.33% with n=24), while Haemaphysalis hystricis had the lowest percentage; only 1 female tick was positive for Coxiella-like bacteria (n=6). Interestingly, the results indicated that female Haemaphysalis ticks tended to harbour Coxiella symbionts more frequently than male ticks (59.32% of females and 21.27% of males of all species studied). Phylogenetic analyses based on 16S rRNA sequences illustrated that Coxiella-like spp. from the same tick species always grouped in same clade, regardless of the location from which they were isolated. Moreover, a phylogenetic tree also showed that Coxiella-like endosymbionts from other genera (for example, the tick genus Rhipicephalus) formed a separate group compared to Coxiella-like symbionts in the genus Haemaphysalis. This suggests that a high amount of DNA sequence variation is present in Coxiella-like bacteria harboured by ticks.


Asunto(s)
Bacterias/aislamiento & purificación , Coxiella/aislamiento & purificación , Ixodidae/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Coxiella/clasificación , Coxiella/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Masculino , Filogenia , Análisis de Secuencia de ADN , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA