Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267907

RESUMEN

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Asunto(s)
Comunicación Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transducción de Señal
2.
Nature ; 613(7943): 391-397, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599985

RESUMEN

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Asunto(s)
Proteínas de Unión al GTP , Metiltransferasas , Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , Biocatálisis , Dominio Catalítico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Fosforilación , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Especificidad por Sustrato
3.
Nature ; 616(7958): 790-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921622

RESUMEN

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitosis
4.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30389415

RESUMEN

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Asunto(s)
Complejo CD3/metabolismo , Membrana Celular/metabolismo , Dominios Proteicos , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Secuencia de Aminoácidos , Biomarcadores , Complejo CD3/química , Secuencia Conservada , Perfilación de la Expresión Génica , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Transducción de Señal , Transcriptoma
5.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37400558

RESUMEN

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica
6.
Nature ; 580(7805): 663-668, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152607

RESUMEN

On average, an approved drug currently costs US$2-3 billion and takes more than 10 years to develop1. In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened2. However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (Kd) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Simulación del Acoplamiento Molecular/métodos , Programas Informáticos , Interfaz Usuario-Computador , Acceso a la Información , Automatización/métodos , Automatización/normas , Nube Computacional , Simulación por Computador , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas/normas , Evaluación Preclínica de Medicamentos/normas , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ligandos , Simulación del Acoplamiento Molecular/normas , Terapia Molecular Dirigida , Factor 2 Relacionado con NF-E2/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos/normas , Termodinámica
7.
Proc Natl Acad Sci U S A ; 120(3): e2218959120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626555

RESUMEN

Transcription factors (TFs) control numerous genes that are directly relevant to many human disorders. However, developing specific reagents targeting TFs within intact cells is challenging due to the presence of highly disordered regions within these proteins. Intracellular antibodies offer opportunities to probe protein function and validate therapeutic targets. Here, we describe the optimization of nanobodies specific for BCL11A, a validated target for the treatment of hemoglobin disorders. We obtained first-generation nanobodies directed to a region of BCL11A comprising zinc fingers 4 to 6 (ZF456) from a synthetic yeast surface display library, and employed error-prone mutagenesis, structural determination, and molecular modeling to enhance binding affinity. Engineered nanobodies recognized ZF6 and mediated targeted protein degradation (TPD) of BCL11A protein in erythroid cells, leading to the anticipated reactivation of fetal hemoglobin (HbF) expression. Evolved nanobodies distinguished BCL11A from its close paralog BCL11B, which shares an identical DNA-binding specificity. Given the ease of manipulation of nanobodies and their exquisite specificity, nanobody-mediated TPD of TFs should be suitable for dissecting regulatory relationships of TFs and gene targets and validating therapeutic potential of proteins of interest.


Asunto(s)
Anticuerpos de Dominio Único , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hemoglobina Fetal/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(14): e2217066120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989298

RESUMEN

Viruses form extensive interfaces with host proteins to modulate the biology of the infected cell, frequently via multifunctional viral proteins. These proteins are conventionally considered as assemblies of independent functional modules, where the presence or absence of modules determines the overall composite phenotype. However, this model cannot account for functions observed in specific viral proteins. For example, rabies virus (RABV) P3 protein is a truncated form of the pathogenicity factor P protein, but displays a unique phenotype with functions not seen in longer isoforms, indicating that changes beyond the simple complement of functional modules define the functions of P3. Here, we report structural and cellular analyses of P3 derived from the pathogenic RABV strain Nishigahara (Nish) and an attenuated derivative strain (Ni-CE). We identify a network of intraprotomer interactions involving the globular C-terminal domain and intrinsically disordered regions (IDRs) of the N-terminal region that characterize the fully functional Nish P3 to fluctuate between open and closed states, whereas the defective Ni-CE P3 is predominantly open. This conformational difference appears to be due to the single mutation N226H in Ni-CE P3. We find that Nish P3, but not Ni-CE or N226H P3, undergoes liquid-liquid phase separation and this property correlates with the capacity of P3 to interact with different cellular membrane-less organelles, including those associated with immune evasion and pathogenesis. Our analyses propose that discrete functions of a critical multifunctional viral protein depend on the conformational arrangements of distant individual domains and IDRs, in addition to their independent functions.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Isoformas de Proteínas/metabolismo
9.
PLoS Pathog ; 19(11): e1011781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976321

RESUMEN

Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.


Asunto(s)
Citomegalovirus , Herpesviridae , Humanos , Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Replicación Viral , Simplexvirus , Acrilamidas/metabolismo , Antivirales/farmacología , Antivirales/metabolismo
10.
Nat Chem Biol ; 19(12): 1540-1550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884805

RESUMEN

NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.


Asunto(s)
NADPH Oxidasas , Neoplasias , Humanos , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Línea Celular
11.
Nucleic Acids Res ; 50(10): 5424-5442, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35552740

RESUMEN

Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.


Asunto(s)
Células Eucariotas/metabolismo , Factores Eucarióticos de Iniciación/química , Iniciación de la Cadena Peptídica Traduccional , Factor 4G Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas
12.
Nat Methods ; 16(4): 333-340, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858598

RESUMEN

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Asunto(s)
Isótopos de Carbono/química , Resonancia Magnética Nuclear Biomolecular/instrumentación , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , ADN/química , Escherichia coli/metabolismo , Flúor/química , Fluorouracilo/química , Campos Magnéticos , Peso Molecular , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/química , Thermoplasma/metabolismo
13.
Nature ; 530(7591): 485-9, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26886795

RESUMEN

Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a transcription factor-binding site in Mediator as a novel therapeutic strategy in fungal infectious disease.


Asunto(s)
Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas Fúngicas/metabolismo , Complejo Mediador/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Candida glabrata/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica Múltiple/efectos de los fármacos , Fluconazol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidrazinas/farmacocinética , Hidrazinas/farmacología , Cetoconazol/farmacología , Complejo Mediador/química , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacocinética , Tiourea/farmacología , Transactivadores/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 115(8): E1710-E1719, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432148

RESUMEN

Studies over the past decade have highlighted the functional significance of intrinsically disordered proteins (IDPs). Due to conformational heterogeneity and inherent dynamics, structural studies of IDPs have relied mostly on NMR spectroscopy, despite IDPs having characteristics that make them challenging to study using traditional 1H-detected biomolecular NMR techniques. Here, we develop a suite of 3D 15N-detected experiments that take advantage of the slower transverse relaxation property of 15N nuclei, the associated narrower linewidth, and the greater chemical shift dispersion compared with those of 1H and 13C resonances. The six 3D experiments described here start with aliphatic 1H magnetization to take advantage of its higher initial polarization, and are broadly applicable for backbone assignment of proteins that are disordered, dynamic, or have unfavorable amide proton exchange rates. Using these experiments, backbone resonance assignments were completed for the unstructured regulatory domain (residues 131-294) of the human transcription factor nuclear factor of activated T cells (NFATC2), which includes 28 proline residues located in functionally important serine-proline (SP) repeats. The complete assignment of the NFATC2 regulatory domain enabled us to study phosphorylation of NFAT by kinase PKA and phosphorylation-dependent binding of chaperone protein 14-3-3 to NFAT, providing mechanistic insight on how 14-3-3 regulates NFAT nuclear translocation.


Asunto(s)
Espectroscopía de Resonancia Magnética , Factores de Transcripción NFATC/química , Isótopos de Nitrógeno/química , Conformación Proteica
15.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071676

RESUMEN

The docking program PLANTS, which is based on ant colony optimization (ACO) algorithm, has many advanced features for molecular docking. Among them are multiple scoring functions, the possibility to model explicit displaceable water molecules, and the inclusion of experimental constraints. Here, we add support of PLANTS to VirtualFlow (VirtualFlow Ants), which adds a valuable method for primary virtual screenings and rescoring procedures. Furthermore, we have added support of ligand libraries in the MOL2 format, as well as on the fly conversion of ligand libraries which are in the PDBQT format to the MOL2 format to endow VirtualFlow Ants with an increased flexibility regarding the ligand libraries. The on the fly conversion is carried out with Open Babel and the program SPORES. We applied VirtualFlow Ants to a test system involving KEAP1 on the Google Cloud up to 128,000 CPUs, and the observed scaling behavior is approximately linear. Furthermore, we have adjusted several central docking parameters of PLANTS (such as the speed parameter or the number of ants) and screened 10 million compounds for each of the 10 resulting docking scenarios. We analyzed their docking scores and average docking times, which are key factors in virtual screenings. The possibility of carrying out ultra-large virtual screening with PLANTS via VirtualFlow Ants opens new avenues in computational drug discovery.


Asunto(s)
Algoritmos , Inteligencia Artificial , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ligandos , Factor 2 Relacionado con NF-E2/química , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Termodinámica
16.
Angew Chem Int Ed Engl ; 60(25): 13783-13787, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33768661

RESUMEN

Therapeutically relevant proteins such as GPCRs, antibodies and kinases face clear limitations in NMR studies due to the challenges in site-specific isotope labeling and deuteration in eukaryotic expression systems. Here we describe an efficient and simple method to observe the methyl groups of leucine residues in proteins expressed in bacterial, eukaryotic or cell-free expression systems without modification of the expression protocol. The method relies on simple stereo-selective 13 C-labeling and deuteration of leucine that alleviates the need for additional deuteration of the protein. The spectroscopic benefits of "local" deuteration are examined in detail through Forbidden Coherence Transfer (FCT) experiments and simulations. The utility of this labeling method is demonstrated in the cell-free synthesis of bacteriorhodopsin and in the insect-cell expression of the RRM2 domain of human RBM39.


Asunto(s)
Eucariontes/química , Resonancia Magnética Nuclear Biomolecular , Receptores Acoplados a Proteínas G/química , Humanos , Estructura Molecular
17.
J Biomol NMR ; 74(10-11): 479-498, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32720098

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.


Asunto(s)
Descubrimiento de Drogas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Diseño de Fármacos , Entropía , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Cinética , Ligandos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Termodinámica , Agua/química
18.
J Biomol NMR ; 74(10-11): 499-500, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32951153

RESUMEN

Unfortunately, in the original publication, Fig. 5 was published incorrectly. The correct version is given below.

19.
J Biomol NMR ; 74(8-9): 365-379, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32651751

RESUMEN

The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.


Asunto(s)
Flúor/química , Espectroscopía de Resonancia Magnética , Aminoácidos Aromáticos/química , Halogenación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas/química
20.
Nucleic Acids Res ; 46(7): 3791-3801, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562352

RESUMEN

Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Leishmania major/genética , Leishmaniasis Cutánea/genética , Biosíntesis de Proteínas , Cristalografía por Rayos X , Factor 4E Eucariótico de Iniciación/genética , Regulación de la Expresión Génica/genética , Humanos , Leishmania major/patogenicidad , Leishmaniasis Cutánea/parasitología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA