Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Remote Sens Ecol Conserv ; 7(1): 97-108, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33889421

RESUMEN

Changes in the physical environment along the Antarctic Peninsula have been among the most rapid anywhere on the planet. In concert with environmental change, the potential for direct human disturbance resulting from tourism, scientific programs, and commercial fisheries continues to rise in the region. While seabirds, such as the gentoo penguin Pygoscelis papua, are commonly used to assess the impact of these disturbances on natural systems, research efforts are often hampered by limited spatial coverage and lack of temporal resolution. Using a large-scale remote time-lapse camera network and a modeling framework adapted from capture-recapture studies, we assess drivers of intra- and inter-annual dynamics in gentoo penguin breeding success across nearly the entire species' range in the Atlantic sector of the Southern Ocean. We quantify the precise timing of egg/chick mortality within each season and examine the role of precipitation events, tourism visitation, and fishing activity for Antarctic krill Euphausia superba (a principal prey resource in the Antarctic) in these processes. We find that nest failure rates are higher in the egg than the chick stage and that neither krill fishing nor tourism visitation had a strong effect on gentoo penguin breeding success. While precipitation events had, on average, little effect on nest mortality, results suggest that extreme weather events can precipitate sharp increases in nest failure. This study highlights the importance of continuous ecosystem monitoring, facilitated here by remote time-lapse cameras, in understanding ecological responses to environmental stressors, particularly with regard to the timing of events such as extreme weather.

3.
Sci Data ; 5: 180124, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29944146

RESUMEN

Automated time-lapse cameras can facilitate reliable and consistent monitoring of wild animal populations. In this report, data from 73,802 images taken by 15 different Penguin Watch cameras are presented, capturing the dynamics of penguin (Spheniscidae; Pygoscelis spp.) breeding colonies across the Antarctic Peninsula, South Shetland Islands and South Georgia (03/2012 to 01/2014). Citizen science provides a means by which large and otherwise intractable photographic data sets can be processed, and here we describe the methodology associated with the Zooniverse project Penguin Watch, and provide validation of the method. We present anonymised volunteer classifications for the 73,802 images, alongside the associated metadata (including date/time and temperature information). In addition to the benefits for ecological monitoring, such as easy detection of animal attendance patterns, this type of annotated time-lapse imagery can be employed as a training tool for machine learning algorithms to automate data extraction, and we encourage the use of this data set for computer vision development.


Asunto(s)
Spheniscidae , Imagen de Lapso de Tiempo/métodos , Animales , Regiones Antárticas , Seguimiento de Parámetros Ecológicos/métodos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA