Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Cell Biochem ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37098699

RESUMEN

Glucocorticoids (GCs) actions are mostly mediated by the GC receptor (GR), a member of the nuclear receptor superfamily. Alterations of the GR activity have been associated to different diseases including mood disorders. FKBP51 is a GR chaperone that has gained much attention because it is a strong inhibitor of GR activity. FKBP51 exerts effects on many stress-related pathways and may be an important mediator of emotional behavior. Key proteins involved in the regulation of the stress response and antidepressant action are regulated by SUMOylation, a post-translational modification that has an important role in the regulation of neuronal physiology and disease. In this review, we focus on the role of SUMO-conjugation as a regulator of this pathway.

2.
Mol Psychiatry ; 27(5): 2533-2545, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35256747

RESUMEN

FKBP51 is an important inhibitor of the glucocorticoid receptor (GR) signaling. High FKBP51 levels are associated to stress-related disorders, which are linked to GR resistance. SUMO conjugation to FKBP51 is necessary for FKBP51's inhibitory action on GR. The GR/FKBP51 pathway is target of antidepressant action. Thus we investigated if these drugs could inhibit FKBP51 SUMOylation and therefore restore GR activity. Screening cells using Ni2+ affinity and in vitro SUMOylation assays revealed that tricyclic antidepressants- particularly clomipramine- inhibited FKBP51 SUMOylation. Our data show that clomipramine binds to FKBP51 inhibiting its interaction with PIAS4 and therefore hindering its SUMOylation. The inhibition of FKBP51 SUMOylation decreased its binding to Hsp90 and GR facilitating FKBP52 recruitment, and enhancing GR activity. Reduction of PIAS4 expression in rat primary astrocytes impaired FKBP51 interaction with GR, while clomipramine could no longer exert its inhibitory action. This mechanism was verified in vivo in mice treated with clomipramine. These results describe the action of antidepressants as repressors of FKBP51 SUMOylation as a molecular switch for restoring GR sensitivity, thereby providing new potential routes of antidepressant intervention.


Asunto(s)
Receptores de Glucocorticoides , Sumoilación , Animales , Antidepresivos Tricíclicos/farmacología , Clomipramina , Regulación de la Expresión Génica , Ratones , Ratas , Receptores de Glucocorticoides/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
3.
J Proteome Res ; 20(1): 786-803, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124415

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with 50-80% patients exhibiting mutations in the von Hippel-Lindau (VHL) gene. RSUME (RWD domain (termed after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases)-containing protein small ubiquitin-related modifier (SUMO) enhancer) acts as a negative regulator of VHL function in normoxia. A discovery-based metabolomics approach was developed by means of ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (MS) for fingerprinting the endometabolome of a human ccRCC cell line 786-O and three other transformed cell systems (n = 102) with different expressions of RSUME and VHL. Cross-validated orthogonal projection to latent structures discriminant analysis models were built on positive, negative, and a combination of positive- and negative-ion mode MS data sets. Discriminant feature panels selected by an iterative multivariate classification allowed differentiating cells with different expressions of RSUME and VHL. Fifteen identified discriminant metabolites with level 1, including glutathione, butyrylcarnitine, and acetylcarnitine, contributed to understand the role of RSUME in ccRCC. Altered pathways associated with the RSUME expression were validated by biological and bioinformatics analyses. Combined results showed that in the absence of VHL, RSUME is involved in the downregulation of the antioxidant defense system, whereas in the presence of VHL, it acts in rerouting energy-related pathways, negatively modulating the lipid utilization, and positively modulating the fatty acid synthesis, which may promote deposition in droplets.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Humanos , Neoplasias Renales/genética , Espectrometría de Masas , Factores de Transcripción , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
4.
Neuroimmunomodulation ; 28(2): 52-60, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33845478

RESUMEN

Depression and other psychiatric stress-related disorders are leading causes of disability worldwide. Up to date, treatments of mood disorders have limited success, most likely due to the multifactorial etiology of these conditions. Alterations in inflammatory processes have been identified as possible pathophysiological mechanisms in psychiatric conditions. Here, we review the main features of 2 systems involved in the control of these inflammatory pathways: the CRH system as a key regulator of the stress response and the ATP-gated ion-channel P2X7 receptor (P2X7R) involved in the control of immune functions. The pathophysiology of depression as a stress-related psychiatric disorder is depicted in terms of the impact of CRH and P2X7R function on inflammatory pathways in the brain. Understanding pathogenesis of affective disorders will lead to the development of therapies for treatment of depression and other stress-related diseases.


Asunto(s)
Hormona Liberadora de Corticotropina , Trastornos Mentales , Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Depresión , Humanos , Receptores Purinérgicos P2X7
5.
Physiol Rev ; 92(1): 1-38, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22298650

RESUMEN

The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.


Asunto(s)
Comunicación Celular/fisiología , Hipófisis/citología , Hipófisis/fisiología , Transducción de Señal/fisiología , Animales , Sistema Endocrino/fisiología , Homeostasis/fisiología , Hormonas/metabolismo , Humanos , Sistemas Neurosecretores/fisiología
6.
J Neurosci ; 37(48): 11688-11700, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29079688

RESUMEN

A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders.SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders.


Asunto(s)
Variación Genética/genética , Heterocigoto , Trastornos del Humor/genética , Receptores Purinérgicos P2X7/genética , Sueño/genética , Animales , Arginina/genética , Células Cultivadas , Glutamina/genética , Hipocampo/fisiología , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Purinergic Signal ; 13(2): 153-170, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27858314

RESUMEN

The purinergic P2X7 receptor (P2X7R) has attracted considerable interest as a potential target for various central nervous system (CNS) pathologies including affective and neurodegenerative disorders. To date, the distribution and cellular localization of the P2X7R in the brain are not fully resolved and a matter of debate mainly due to the limitations of existing tools. However, this knowledge should be a prerequisite for understanding the contribution of the P2X7R to brain disease. Here, we generated a genetic mouse model by humanizing the P2X7R in the mouse as mammalian model organism. We demonstrated its functionality and revealed species-specific characteristics of the humanized receptor, compared to the murine ortholog, regarding its receptivity to activation and modulation by 2',3'-O-(benzoyl-4-benzoyl)-adenosine 5'-triphosphate (BzATP) and trifluoperazine (TFP). This humanized P2rx7 allele is accessible to spatially and temporally controlled Cre recombinase-mediated inactivation. In contrast to previously generated knockout (KO) mice, none of the described P2rx7 splice variants evade this null allele. By selective disruption and assessment of human P2RX7 expression in different brain regions and cell types, we were able to demonstrate that the P2X7R is specifically expressed in glutamatergic pyramidal neurons of the hippocampus. Also, P2X7R is expressed in major non-neuronal lineages throughout the brain, i.e., astrocytes, oligodendrocytes, and microglia. In conclusion, this humanized mouse model provides the means for detailed assessment of human P2X7R function in vivo including evaluation of agonists or antagonists. In addition, this conditional allele will enable future loss-of-function studies in conjunction with mouse models for CNS disorders.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales , Receptores Purinérgicos P2X7/metabolismo , Animales , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Noqueados
8.
Biochem Genet ; 54(2): 107-19, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26718581

RESUMEN

During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors.


Asunto(s)
Adenoma/patología , Interleucina-6/metabolismo , MicroARNs/metabolismo , Neoplasias Hipofisarias/patología , Securina/metabolismo , Adenoma/genética , Adenoma/metabolismo , Ciclo Celular , Senescencia Celular , Daño del ADN , Epigénesis Genética , Genes Supresores de Tumor , Humanos , Oncogenes , Hipófisis/metabolismo , Hipófisis/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Transducción de Señal
10.
Aging Cell ; : e14258, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012326

RESUMEN

Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.

12.
Proc Natl Acad Sci U S A ; 107(37): 16119-24, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20805487

RESUMEN

Protein modification by conjugation of small ubiquitin-related modifier (SUMO) is involved in diverse biological functions, such as transcription regulation, subcellular partitioning, stress response, DNA damage repair, and chromatin remodeling. Here, we show that the serine/arginine-rich protein SF2/ASF, a factor involved in splicing regulation and other RNA metabolism-related processes, is a regulator of the sumoylation pathway. The overexpression of this protein stimulates, but its knockdown inhibits SUMO conjugation. SF2/ASF interacts with Ubc9 and enhances sumoylation of specific substrates, sharing characteristics with already described SUMO E3 ligases. In addition, SF2/ASF interacts with the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT-1), regulating PIAS1-induced overall protein sumoylation. The RNA recognition motif 2 of SF2/ASF is necessary and sufficient for sumoylation enhancement. Moreover, SF2/ASF has a role in heat shock-induced sumoylation and promotes SUMO conjugation to RNA processing factors. These results add a component to the sumoylation pathway and a previously unexplored role for the multifunctional SR protein SF2/ASF.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína SUMO-1/metabolismo , Línea Celular , Respuesta al Choque Térmico , Humanos , Proteínas Nucleares/genética , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina , Especificidad por Sustrato , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
13.
Medicina (B Aires) ; 73(1): 75-7, 2013.
Artículo en Español | MEDLINE | ID: mdl-23335711

RESUMEN

It is in our interest, in this brief manuscript, to report the creation of the first program of regional integration of a network of research institutes in Biomedicine belonging to members of the MERCOSUR countries. We discuss some of the foundations that gave sustenance to its creation and its objectives in the medium and long term. In addition, we consider the potential of the results of this program in the fields of applied medical research, education and biotechnology.


Asunto(s)
Academias e Institutos/organización & administración , Investigación Biomédica/organización & administración , Tecnología Biomédica/organización & administración , Redes Comunitarias/organización & administración , Argentina , Investigación Biomédica/educación , Tecnología Biomédica/educación , Brasil , Humanos , Paraguay , Transferencia de Tecnología , Uruguay
14.
Clin Genitourin Cancer ; 21(3): 393-402.e5, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059686

RESUMEN

INTRODUCTION: RSUME (RWD domain-containing protein SUMO Enhancer), RWD domain containing 3 (RWDD3) gene product, is upregulated by hypoxia and expressed in organs prone to develop von Hippel-Lindau (VHL) syndrome tumors. MATERIALS AND METHODS: We evaluated RSUME prognostic value in clear cell renal cell carcinoma (ccRCC) based mainly on the dataset (KIRC) from patients in The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test and one-way analysis of variance (ANOVA) followed by Tukey's test were used to evaluate relationships between clinicopathological features and RSUME expression and univariate and multivariate Cox regression analysis methods were used to evaluate prognostic factors. The biological function of RSUME was assessed by gene set enrichment analysis (GSEA). For validation, total amount of ROS was detected in ccRCC cell lines using dichlorofluorescin diacetate. RESULTS: RSUME is highly expressed in tumor tissues compared with normal tissues (P = .006, P = .039, P = .002, P = .036, P < .001) and associates with tumor T (P = .018) and tumor M (P = .036) advanced stages and higher extent cysts (P = .005). RSUME expression appears to be an independent risk factor for overall survival (OS) (P = .002) and disease-specific survival (DSS) (P = .026) in ccRCC patients. GSEA showed enrichment of relevant glycerophospholipid- and ROS-related pathways in RSUME high-expression phenotype. ROS diminished levels in RSUME-silenced ccRCC cell lines validated RSUME relevance in ROS-related pathways. CONCLUSION: RSUME high expression may predict poor prognosis in ccRCC and impact through its action on metabolism and ROS related pathways.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Enfermedad de von Hippel-Lindau , Humanos , Carcinoma de Células Renales/patología , Especies Reactivas de Oxígeno , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pronóstico , Neoplasias Renales/patología
15.
Front Endocrinol (Lausanne) ; 13: 864780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528020

RESUMEN

The small RWD domain-containing protein called RSUME or RWDD3 was cloned from pituitary tumor cells with increasing tumorigenic and angiogenic proficiency. RSUME expression is induced under hypoxia or heat shock and is upregulated, at several pathophysiological stages, in tissues like pituitary, kidney, heart, pancreas, or adrenal gland. To date, several factors with essential roles in endocrine-related cancer appear to be modulated by RWDD3. RSUME regulates, through its post-translational (PTM) modification, pituitary tumor transforming gene (PTTG) protein stability in pituitary tumors. Interestingly, in these tumors, another PTM, the regulation of EGFR levels by USP8, plays a pathogenic role. Furthermore, RSUME suppresses ubiquitin conjugation to hypoxia-inducible factor (HIF) by blocking VHL E3-ubiquitin ligase activity, contributing to the development of von Hippel-Lindau disease. RSUME enhances protein SUMOylation of specific targets involved in inflammation such as IkB and the glucocorticoid receptor. For many of its actions, RSUME associates with regulatory proteins of ubiquitin and SUMO cascades, such as the E2-SUMO conjugase Ubc9 or the E3 ubiquitin ligase VHL. New evidence about RSUME involvement in inflammatory and hypoxic conditions, such as cardiac tissue response to ischemia and neuropathic pain, and its role in several developmental processes, is discussed as well. Given the modulation of PTMs by RSUME in neuroendocrine tumors, we focus on its interactors and its mode of action. Insights into functional implications and molecular mechanisms of RSUME action on biomolecular modifications of key factors of pituitary adenomas and renal cell carcinoma provide renewed information about new targets to treat these pathologies.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Factores de Transcripción , Adenoma/metabolismo , Humanos , Hipoxia , Neoplasias Hipofisarias/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinas
17.
Neuroendocrinology ; 94(1): 12-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21576930

RESUMEN

Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders.


Asunto(s)
Hormona Liberadora de Corticotropina/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Animales , Sistema Nervioso Central/fisiología , Humanos , Ratones , Modelos Animales , Receptores de Hormona Liberadora de Corticotropina/fisiología , Transducción de Señal/fisiología
18.
Neuroendocrinology ; 94(2): 124-36, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21525729

RESUMEN

SOM230 (pasireotide) is a multiligand somatostatin (SRIF) analog able to bind to somatostatin receptor (SSTR) subtypes 1, 2, 3 and 5, and trigger antisecretory and antiproliferative signaling cascades. Canines have become in vivo models to test the pharmacological treatment of corticotropinomas because they frequently develop Cushing's disease in a spontaneous manner, due to adrenocorticotropic hormone (ACTH)-producing pituitary adenomas. Different levels of expression of SSTR2 and SSTR5 have been shown in both mouse AtT20 cells and canine tumoral corticotropinoma cells. The objective of this study was to evaluate whether SOM230 controls both tumor cell growth and hormone synthesis, therefore controlling the disease. SOM230 was tested in dogs suffering from Cushing's disease (10 animals were treated continuously during 6 months, and another 10 were treated with 3 cycles consisting of 2 months of treatment followed by a 2-month rest period). A significant decrease in ACTH, urinary cortisol creatinine ratio, adenoma size (magnetic nuclear resonance) and improvement of clinical signs were obtained, without side effects. AtT20 cells treated with SOM230 suppressed pro-opiomelanocortin (POMC) promoter activity through SSTR2, via the G(i) α-subunit, and reduced Nur77/Nurr1 transcriptional activity. We conclude that SOM230, in addition to its well-described antisecretory effects, inhibits, as shown in AtT20 cells, ACTH synthesis at the POMC transcriptional level, an effect mediated mainly through SSTR2, and limits tumor growth. The controlled Cushing's disease in the dogs that received the treatment indicates that SOM230 has a potential therapeutic use in humans suffering from Cushing's disease.


Asunto(s)
Hormona Adrenocorticotrópica/biosíntesis , Corticotrofos/efectos de los fármacos , Corticotrofos/metabolismo , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/metabolismo , Somatostatina/análogos & derivados , Hormona Adrenocorticotrópica/sangre , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Animales , Aspartato Aminotransferasas/sangre , Glucemia/metabolismo , Línea Celular Tumoral , Colesterol/sangre , Creatinina/orina , Perros , Femenino , Hidrocortisona/orina , Pruebas de Función Hepática , Imagen por Resonancia Magnética , Masculino , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/patología , Somatostatina/farmacología , Triglicéridos/sangre , alfa-MSH/sangre
19.
FASEB J ; 23(5): 1558-71, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19124555

RESUMEN

Glucocorticoid (GC) immunosuppression and anti-inflammatory action involve the regulation of several transcription factors (TFs). GCs inhibit the acute production of T-helper (Th) 1 and Th2 cytokines but ultimately favor a shift toward Th2 phenotype. GCs inhibit the transcriptional activity of T-bet Th1 TF by a transrepression mechanism. Here we analyze GC regulation of GATA-3, the master driver of Th2 differentiation. We found that GCs inhibit GATA-3 transcriptional activity. We demonstrate that this mechanism does not involve physical interaction between the glucocorticoid receptor (GR) and GATA-3 or reduction of GATA-3 binding to DNA, as described previously for T-bet. Instead, GCs inhibit GATA-3 activity by inhibition of p38 mitogen-activated protein kinase induced GATA-3 phosphorylation. GCs also inhibit GATA-3 mRNA and protein expression. Finally, GATA-3 inhibition affects the interleukin-5 gene, a central Th2 cytokine. The IC(50) of dexamethasone is 10 nM with a maximum effect at 100 nM. All inhibitory actions were blocked by the GR antagonist RU38486 (1 uM), proving the specificity of GR action. In view of the crucial role of GATA-3 in T-cell differentiation and inflammation, we propose that the mechanism of GATA-3 inhibition compared with that in T-bet may have relevant implications in understanding and modulating the anti-inflammatory and Th-regulatory properties of GCs.


Asunto(s)
Dexametasona/farmacología , Factor de Transcripción GATA3/antagonistas & inhibidores , Hidrocortisona/farmacología , Células Th2/efectos de los fármacos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Factor de Transcripción GATA3/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Interleucina-5/biosíntesis , Ratones , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal , Células Th2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Neuroendocrinology ; 91(2): 200-10, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20160430

RESUMEN

The polyphenol curcumin (diferuloylmethane) is the active componenet of the spice plant Curcuma longa and has been shown to exert multiple actions on mammalian cells. We have studied its effect on folliculostellate (FS) TtT/GF mouse pituitary cells, representative of a multifunctional, endocrine inactive cell type of the anterior pituitary. Proliferation of TtT/GF cells was inhibited by curcumin in a monolayer cell culture and in the colony formation assay in soft agar. Fluorescence-activated cell-sorting (FACS) analysis demonstrated curcumin-induced cell cycle arrest at G(2)/M accompanied by inhibition of cyclin D(1) protein expression. Curcumin had a small effect on necrosis of TtT/GF cells, but it mainly stimulated apoptosis as demonstrated by FACS analysis (Annexin V-fluorescein isothiocyannate/7-aminoactinomycin D staining). Curcumin-induced apoptosis involved suppression of Bcl-2, stimulation of cleaved caspase-3 and induction of DNA fragmentation. Functional studies on FS cell-derived compounds showed that curcumin inhibited mRNA synthesis and release of angiogenic vascular endothelial growth factor-A (VEGF-A). Immune-like functions of FS cells were impaired since curcumin downregulated Toll-like receptor 4, reduced nuclear factor-kappaB expression and suppressed bacterial endotoxin-induced interleukin-6 (IL-6) secretion. The inhibitory action of curcumin on VEGF-A and IL-6 production was also found in primary rat pituitary cell cultures, in which FS cells are the only source of these proteins. The observed effects of curcumin on FS cell growth, apoptosis and functions may have therapeutic consequences for the intrapituitary regulation of hormone production and release as well as for pituitary tumor pathogenesis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Adenohipófisis/citología , Adenohipófisis/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Interleucina-6/metabolismo , Masculino , Ratones , Neoplasias Hipofisarias , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA