RESUMEN
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/ß-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/ß-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/ß-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/ß-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/ß-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
Asunto(s)
Encéfalo , Mutación de Línea Germinal , Trastornos del Neurodesarrollo , Fenotipo , Ubiquitina-Proteína Ligasas , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Femenino , Masculino , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , beta Catenina/genética , beta Catenina/metabolismo , Adolescente , Mutación Missense , Estudios de Asociación Genética , Dominios ProteicosRESUMEN
Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.
Asunto(s)
Proteínas F-Box/genética , Variación Genética/genética , Trastornos del Neurodesarrollo/genética , Proteína-Arginina N-Metiltransferasas/genética , Niño , Exoma/genética , Femenino , Estudios de Asociación Genética/métodos , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Secuenciación del Exoma/métodosRESUMEN
PURPOSE: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Adulto , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Humanos , Discapacidad Intelectual/genética , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genéticaRESUMEN
PURPOSE: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority. METHODS: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC. RESULTS: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-associated missense variants. We report p.Asp724 as second mutational hotspot (4/19 cases). Genotype-phenotype correlation confirms a consistently severe phenotype in p.Arg87 patients but a more variable phenotype in p.Asp724 and other substitutions. Three individuals with milder phenotypes carry putative loss-of-function variants, which remain of unclear pathogenicity. Structural modeling predicted missense variants to disturb interactions within the WRC or impair CYFIP2 stability. Consistent with its role in WRC-mediated actin polymerization we substantiate aberrant regulation of the actin cytoskeleton in patient fibroblasts. CONCLUSION: Our study expands the clinical and molecular spectrum of CYFIP2-related neurodevelopmental disorder and provides evidence for aberrant WRC-mediated actin dynamics as contributing cellular pathomechanism.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , ConvulsionesRESUMEN
BACKGROUND: Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS: To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS: The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS: Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.
Asunto(s)
Epilepsia Benigna Neonatal/genética , Síndromes Epilépticos/genética , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/fisiología , Adolescente , Niño , Epilepsia Benigna Neonatal/fisiopatología , Síndromes Epilépticos/fisiopatología , Estudios de Asociación Genética , Células HEK293 , Humanos , Discapacidad Intelectual/fisiopatología , Fenotipo , Adulto JovenRESUMEN
PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.
Asunto(s)
Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Niño , Preescolar , ARN Helicasas DEAD-box/genética , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Mutación , Linaje , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma , Vía de Señalización WntRESUMEN
BACKGROUND: Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500â kb has not been well elucidated in a clinical context. METHODS: By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1-500â kb in a cohort of 714 patients with undiagnosed NDDs. RESULTS: We detected 96 rare CNVs <500â kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130â kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear. CONCLUSIONS: These results verify the diagnostic relevance of genome-wide rare CNVs <500â kb, which were found pathogenic in â¼2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions.
Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Adulto JovenRESUMEN
OBJECTIVE: The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. METHODS: We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. RESULTS: High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. CONCLUSION: High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance.
Asunto(s)
Aberraciones Cromosómicas , Análisis por Micromatrices/métodos , Diagnóstico Prenatal/métodos , Adulto , Células Cultivadas , Cromosomas Humanos , Estudios de Cohortes , Femenino , Humanos , Cariotipificación/métodos , Edad Materna , Valor Predictivo de las Pruebas , Embarazo , Reproducibilidad de los ResultadosRESUMEN
Homozygous contiguous gene deletion syndromes are rare. On 2p21, however, several overlapping homozygous gene deletion syndromes have been described, all presenting with cystinuria but otherwise distinct phenotypes. Hypotonia-cystinuria syndrome (HCS, OMIM606407) is characterized by infantile hypotonia, poor feeding, and growth hormone deficiency. Affected individuals carry homozygous deletions including the cystinuria gene SLC3A1 and the adjacent PREPL gene. Larger homozygous deletions in this region encompassing the PPM1B, SLC3A1, PREPL, and C2orf34 (CAMKMT) genes result in a more severe phenotype, the 2p21 deletion syndrome. A phenotype intermediate to HCS and the 2p21 deletion syndrome is termed atypical HCS and is caused by deletion of SLC3A1, PREPL, and C2orf34 (CAMKMT). Using high resolution SNP array molecular karyotyping we identified two siblings with a homozygous deletion of 83 kb partially encompassing the genes PREPL and C2orf34 (CAMKMT), but not the SLC3A1 gene. The affected siblings display a recognizable phenotype which is similar to atypical HCS with regard to growth failure and neuro-muscular features, but is characterized by lack of cystinuria. The patients also exhibit features which have not been reported to date such as cleft palate and genital abnormalities. In conclusion, we report the first patients with a homozygous 2p21 deletion syndrome without cystinuria and further delineate the complex genotype-phenotype correlations of homozygous microdeletion syndromes of this region.
Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Cistinuria/genética , Metiltransferasas/genética , Serina Endopeptidasas/genética , Niño , Preescolar , Cistinuria/patología , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Fenotipo , Prolil Oligopeptidasas , SíndromeRESUMEN
Pathogenic bi-allelic variants in the SPG11 gene result in rare motor neuron disorders such as Hereditary Spastic Paraplegia type 11, Charcot-Marie Tooth, and Juvenile Amyotrophic Lateral Sclerosis-5. The main challenge in SPG11-linked disease research is the lack of antibodies against SPG11 encoded spatacsin. Here, we describe the CRISPR/Cas9 mediated generation and validation of an endogenously tagged SPG11- human iPSC line that contains an HA tag at the C-terminus of SPG11. The line exhibits multi-lineage differentiation potential and holds promise for studying the role of spatacsin and for the elucidation of SPG11-associated pathogenesis. Resource Table.
Asunto(s)
Células Madre Pluripotentes Inducidas , Paraplejía Espástica Hereditaria , Sistemas CRISPR-Cas/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Proteínas/genética , Paraplejía Espástica Hereditaria/genéticaRESUMEN
Unregulated cell growth, a major hallmark of cancer, is coupled with telomere shortening. Measurement of telomere length could provide important information on cell replication and proliferation state in cancer tissues. Telomere shortening and its potential correlation with downregulation of cell-cycle regulatory elements were studied by the examination of relative telomere length and methylation status of the TP53, P21 and P16 promoters in tissues from breast cancer patients. Telomere length was measured in 104 samples (52 tumors and paired adjacent normal breast tissues) by quantitative PCR. Methylation profile of selected genes was analyzed in all samples using a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results demonstrated a significant shortening of tumor telomere regions compared with paired adjacent normal tissues (P<0.001). Similarly, telomere lengths were significantly shorter in advanced stage cases and in those with higher histological grades (P<0.05). Telomere shortening in cancer tissues was correlated with a different level of hypermethylation in the TP53, P21 and P16 promoters (r=-0.33, P=0.001; r=-0.70, P<0.0001 and r=-0.71, P<0.0001, respectively). The results suggested that inactivation of p16/Rb and/or p53/p21 pathways by hypermethylation may be linked to critical telomere shortening, leading to genome instability and ultimately to malignant transformation. Thus, telomere shortening and promoter hypermethylation of related genes both might serve as breast cancer biomarkers.
Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/genética , Metilación de ADN/genética , Regiones Promotoras Genéticas/genética , Telómero/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patología , Ciclo Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Espectrometría de Masas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
OBJECTIVE: Ovarian cancer remains the most lethal gynaecological cancer. Various molecular changes have been identified and have shown promise for their diagnostic, prognostic and curative capacity but still need further validation. Among different mechanisms, the present article reviews the importance of epigenetic changes in ovarian cancer. METHODS: Recent literature relevant to epigenetics of ovarian cancer has been reviewed. RESULTS: Greater insight into the epigenetic phenomena DNA methylation, histone modification and posttranscriptional gene downregulation by microRNAs is provided. In addition, the contribution of epigenetic control of gene expression to ovarian oncology is analysed and its potential in the clinic is considered. CONCLUSIONS: Although the epigenetics of ovarian cancer is still in its beginnings, it holds promising potential in early stage ovarian cancer detection, evaluation of prognosis/drug resistance and targeted cancer treatment.
Asunto(s)
Neoplasias Ováricas/genética , Epigénesis Genética , Femenino , HumanosRESUMEN
Public knowledge of medical genetics is essential for better establishment of its services but has been rarely evaluated based on distinguished types of knowledge. We designed and validated a new self-administered questionnaire in Farsi (Persian language) to assess public knowledge of medical genetics based on Rogers' framework. This framework divides knowledge into three types of awareness, how-to (practical) and principles knowledge which refer to knowing the existence, proper use, and theoretical principles of an innovation, respectively. We asked consecutive individuals (n = 306, age ≥ 20 years) visiting health centers in different regions of Yazd, a city in central Iran, to fill out the questionnaire. After validation, we analyzed 280 of the questionnaires which revealed a high degree of internal consistency (Cronbach's alpha 0.90) and a positive linear relationship among the scores of different knowledge. Our respondents had relatively fair awareness and how-to, but generally poor principles knowledge with statistically significantly better scores in females and those with higher education. We observed tangible strengths in topics such as consanguineous marriage, thalassemia, and hereditary predisposition to diabetes and cardiovascular disorders, and weaknesses in areas such as genetic testing and genetics of cancer. Notably, experience of premarital genetic counseling did not show any significant effect, but having a relative with a genetic disorder was significantly linked to better awareness scores. Our study provides a reliable and self-administered questionnaire for the assessment of public knowledge of medical genetics. Despite revealing important strengths and weaknesses in our population sample, larger scale evaluations in Iran and other developing countries are needed for better understanding of the public knowledge as the prerequisite for designing appropriate educational programs.
RESUMEN
BACKGROUND: A minority of breast cancer (BC) patients suffer from severe reaction to adjuvant radiotherapy (RT). Although deficient DNA double-strand break repair is considered the main basis for the reactions, pretreatment identification of high-risk patients has been challenging. METHODS: To retrospectively determine the etiology of severe local reaction to RT in a 39-year-old woman with BC, we performed next-generation sequencing followed by further clinical and functional studies. RESULTS: We found a -4 intronic variant (c.2251-4A>G) in trans with a synonymous (c.3576G>A) variant affecting the ATM DNA-repair gene (NG_009830.1, NM_000051.3) which is linked to autosomal recessive ataxia-telangiectasia (A-T). We verified abnormal transcripts resulting from both variants, next to a minor wild-type transcript leading to a residual ATM kinase activity and genomic instability. Follow-up examination of the patient revealed no classic sign of A-T but previously unnoticed head dystonia and mild dysarthria, a family history of BC and late-onset ataxia segregating with the variants. Additionally, her serum level of alpha-fetoprotein (AFP) was elevated similar to A-T patients. CONCLUSION: Considering the variable presentations of A-T and devastating impact of severe reactions to RT, we suggest a routine measurement of AFP in RT-candidate BC patients followed by next-generation sequencing with special attention to non-canonical splice site and synonymous variants in ATM.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/genética , Neoplasias de la Mama/radioterapia , Mutación de Línea Germinal , Traumatismos por Radiación/genética , Adulto , Ataxia Telangiectasia/etiología , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Inestabilidad Genómica , Humanos , Linaje , Empalme del ARN , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Radioterapia Adyuvante/efectos adversos , alfa-Fetoproteínas/metabolismoRESUMEN
BACKGROUND: With the aim to simplify cancer management, cancer research lately dedicated itself more and more to discover and develop non-invasive biomarkers. In this connection, circulating cell-free DNA (ccf DNA) seems to be a promising candidate. Altered levels of ccf nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) have been found in several cancer types and might have a diagnostic value. METHODS: Using multiplex real-time PCR we investigated the levels of ccf nDNA and mtDNA in plasma samples from patients with malignant and benign breast tumors, and from healthy controls. To evaluate the applicability of plasma ccf nDNA and mtDNA as a biomarker for distinguishing between the three study-groups we performed ROC (Receiver Operating Characteristic) curve analysis. We also compared the levels of both species in the cancer group with clinicopathological parameters. RESULTS: While the levels of ccf nDNA in the cancer group were significantly higher in comparison with the benign tumor group (P < 0.001) and the healthy control group (P < 0.001), the level of ccf mtDNA was found to be significantly lower in the two tumor-groups (benign: P < 0.001; malignant: P = 0.022). The level of ccf nDNA was also associated with tumor-size (<2 cm vs. >2 cm<5 cm; 2250 vs. 6658; Mann-Whitney-U-Test: P = 0.034). Using ROC curve analysis, we were able to distinguish between the breast cancer cases and the healthy controls using ccf nDNA as marker (cut-off: 1866 GE/ml; sensitivity: 81%; specificity: 69%; P < 0.001) and between the tumor group and the healthy controls using ccf mtDNA as marker (cut-off: 463282 GE/ml; sensitivity: 53%; specificity: 87%; P < 0.001). CONCLUSION: Our data suggests that nuclear and mitochondrial ccf DNA have potential as biomarkers in breast tumor management. However, ccf nDNA shows greater promise regarding sensitivity and specificity.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico , Núcleo Celular/genética , ADN Mitocondrial/sangre , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Sistema Libre de Células , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Salud , Humanos , Ganglios Linfáticos/patología , Metástasis de la Neoplasia , Curva ROC , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismoRESUMEN
BACKGROUND: In several Iranian provinces, there are large numbers of landmines that threaten the lives of many civilians. Ilam is one of the most polluted areas with 1,086 injuries from landmines between 1989 to 1999, with an overall mortality rate of 36.4%. A remarkable number of deaths occurred before the injured were conveyed to the hospital. In this survey, the effects of on trauma outcome of the use of prehospital trauma life support provided by trained paramedics and rural health workers as first responders were examined. METHODS: In an interventional, prospective study, 4,834 persons (general physicians, nurses, rural health workers, and emergency technicians, high- and low-educated people, layperson villagers, and nomads) were trained in one level of advanced (for general physicians and nurses) and four levels of basic life support courses during two years (2000-2001). Following the training, the data from 288 landmine victims who were referred to the main hospital in Ilam (trauma center) were registered prospectively (2001-2005). The effects of prehospital trauma life support training were assessed by using the Injury Severity Scale (ISS) score and prehospital physiologic severity (PSS) score. RESULTS: There were 288 injuries from landmines in the Mehran region between 2002 and 2005. The mean ISS score was 20.3 with a median of 13. Forty percent were severely injured with an ISS score >15. Of the injured who received prehospital care at the Mehran Emergency Center, the mean value of the PSS scores was 6.40, which improved to 7.43 in the hospital (p = 0.01; 95% CI for difference -0.72 to -0.45), in comparison with 5.97 in the injured who were conveyed to Ilam Hospital directly (mean of ISS was approximately equal in both groups). The total mortality rate was 27% between 2001 and 2005. CONCLUSIONS: Prehospital educations and training help improve PSS scores and reduce the death toll of landmine accidents in the remote areas.
Asunto(s)
Traumatismos por Explosión/mortalidad , Trabajo de Rescate , Población Rural , Traumatismos por Explosión/epidemiología , Traumatismos por Explosión/fisiopatología , Servicios Médicos de Urgencia , Humanos , Irán/epidemiología , Estudios Prospectivos , Índices de Gravedad del Trauma , GuerraRESUMEN
Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in â¼42% of cases with causative copy number variants in 6 patients (â¼10%) and causative sequence variants in 16 established disease genes in 20 patients (â¼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.
Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia/genética , Secuenciación del Exoma/métodos , Tasa de Mutación , Adolescente , Adulto , Niño , Preescolar , Epilepsia/diagnóstico , Exoma , Femenino , Genes Recesivos , Humanos , Lactante , MasculinoRESUMEN
Genetic integrity of induced pluripotent stem cells (iPSCs) is essential for their validity as disease models and for potential therapeutic use. We describe the comprehensive analysis in the ForIPS consortium: an iPSC collection from donors with neurological diseases and healthy controls. Characterization included pluripotency confirmation, fingerprinting, conventional and molecular karyotyping in all lines. In the majority, somatic copy number variants (CNVs) were identified. A subset with available matched donor DNA was selected for comparative exome sequencing. We identified single nucleotide variants (SNVs) at different allelic frequencies in each clone with high variability in mutational load. Low frequencies of variants in parental fibroblasts highlight the importance of germline samples. Somatic variant number was independent from reprogramming, cell type and passage. Comparison with disease genes and prediction scores suggest biological relevance for some variants. We show that high-throughput sequencing has value beyond SNV detection and the requirement to individually evaluate each clone.
Asunto(s)
Bancos de Muestras Biológicas/normas , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/normas , Perfil Genético , Células Madre Pluripotentes Inducidas/fisiología , Dermatoglifia del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Análisis de Secuencia de ADNRESUMEN
Acrocallosal syndrome (ACLS) is an autosomal recessive neurodevelopmental disorder caused by KIF7 defects and belongs to the heterogeneous group of ciliopathies related to Joubert syndrome (JBTS). While ACLS is characterized by macrocephaly, prominent forehead, depressed nasal bridge, and hypertelorism, facial dysmorphism has not been emphasized in JBTS cohorts with molecular diagnosis. To evaluate the specificity and etiology of ACLS craniofacial features, we performed whole exome or targeted Sanger sequencing in patients with the aforementioned overlapping craniofacial appearance but variable additional ciliopathy features followed by functional studies. We found (likely) pathogenic variants of KIF7 in 5 out of 9 families, including the original ACLS patients, and delineated 1000 to 4000-year-old Swiss founder alleles. Three of the remaining families had (likely) pathogenic variants in the JBTS gene C5orf42, and one patient had a novel de novo frameshift variant in SHH known to cause autosomal dominant holoprosencephaly. In accordance with the patients' craniofacial anomalies, we showed facial midline widening after silencing of C5orf42 in chicken embryos. We further supported the link between KIF7, SHH, and C5orf42 by demonstrating abnormal primary cilia and diminished response to a SHH agonist in fibroblasts of C5orf42-mutated patients, as well as axonal pathfinding errors in C5orf42-silenced chicken embryos similar to those observed after perturbation of Shh signaling. Our findings, therefore, suggest that beside the neurodevelopmental features, macrocephaly and facial widening are likely more general signs of disturbed SHH signaling. Nevertheless, long-term follow-up revealed that C5orf42-mutated patients showed catch-up development and fainting of facial features contrary to KIF7-mutated patients.