Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
J Neurosci ; 42(23): 4737-4754, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35508385

RESUMEN

Studies have recently demonstrated that a caspase-2-mediated cleavage of human tau (htau) at asparate-314 (D314) is responsible for cognitive deficits and neurodegeneration in mice modeling frontotemporal dementia (FTD). However, these animal studies may be confounded by flaws in their model systems, such as endogenous functional gene disruption and inequivalent transgene expression. To avoid these weaknesses, we examined the pathogenic role of this site-specific htau cleavage in FTD using genetically matched htau targeted-insertion mouse lines: rT2 and rT3. Both male and female mice were included in this study. rT2 mice contain a single copy of the FTD-linked htau proline-to-leucine mutation at amino acid 301 (htau P301L), inserted into a neutral site to avoid dysregulation of host gene expression. The similarly constructed rT3 mice harbor an additional D314-to-glutamate (D314E) mutation that blocks htau cleavage. We demonstrate that htau transgene expression occurs primarily in the forebrain at similar levels in rT2 and rT3 mice. Importantly, expression of the cleavage-resistant D314E mutant delays transgene-induced tau accumulation in the postsynaptic density, brain atrophy, hippocampal neurodegeneration, and spatial memory impairment, without altering age-related progression of pathologic tau conformation and phosphorylation. Our comprehensive investigation of age-dependent disease phenotypes associated with the htau P301L variant in precisely engineered FTD-modeling mice unveils a transiently protective effect of blocking htau cleavage at D314. Findings of this study advance our understanding of the contribution of this tau cleavage to the pathogenesis of FTD, and aid the development of effective dementia-targeting therapies.SIGNIFICANCE STATEMENT A site-specific and caspase-2-mediated cleavage of human tau plays a pathologic role in dementia. In this study, we investigate the contribution of this cleavage to the pathogenesis of frontotemporal dementia (FTD) using two genetically matched, tau-transgene targeted-insertion mouse lines that differ only by a cleavage-resistant mutation. The use of these mice avoids confounding effects associated with the random integration of tau transgenes to the mouse genome and allows us to comprehensively evaluate the impact of the tau cleavage on FTD phenotypes. Our data reveal that blocking this tau cleavage delays memory impairment and neurodegeneration of FTD-modeling mice. These findings improve our understanding of the pathogenic mechanisms underlying FTD and will facilitate the development of effective therapeutics.


Asunto(s)
Demencia Frontotemporal , Animales , Caspasa 2/genética , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/genética , Humanos , Masculino , Trastornos de la Memoria , Ratones , Ratones Transgénicos , Fenotipo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Eur J Neurosci ; 55(9-10): 2971-2985, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34048087

RESUMEN

Late onset, sporadic Alzheimer's disease (AD) accounts for the vast majority of cases. Unlike familial AD, the factors that drive the onset of sporadic AD are poorly understood, although aging and stress play a role. The early onset/severity of neuropathology observed in most genetic mouse models of AD hampers the study of the role of aging and environmental factors; thus alternate strategies are necessary to understand the contributions of these factors to sporadic AD. We demonstrate that mice acquiring a low social status (subordinate) in a lifelong chronic psychosocial stress (CPS) model, accrue widespread proteomic changes in the frontal/temporal cortex during aging. To better understand the significance of these stress-induced changes, we compared the differentially expressed proteins (DEPs) of subordinate mice to those of patients at varying stages of dementia. Sixteen and fifteen DEPs upregulated in subordinate mice were also upregulated in patients with mild cognitive impairment (MCI) and AD, respectively. Six of those upregulated proteins (CPE, ERC2, GRIN2B, SLC6A1, SYN1, WFS1) were shared by subordinate mice and patients with MCI or AD. Finally, comparison with a spatially detailed transcriptomic database revealed that the superior frontal gyrus and hippocampus had the greatest overlap between mice subjected to lifelong CPS and AD patients. Overall, most of the overlapping proteins were functionally associated with enhanced NMDA receptor mediated glutamatergic signaling, an excitotoxicity mechanism known to affect neurodegeneration. These findings support the association between stress and AD progression and provide valuable insight into potential early biomarkers and protein mediators of this relationship.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Proteómica , Estrés Psicológico
4.
Arch Pharm (Weinheim) ; 355(9): e2200095, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35642311

RESUMEN

Since the discovery of the caspase-2 (Casp2)-mediated ∆tau314 cleavage product and its associated impact on tauopathies such as Alzheimer's disease, the design of selective Casp2 inhibitors has become a focus in medicinal chemistry research. In the search for new lead structures with respect to Casp2 selectivity and drug-likeness, we have taken an approach by looking more closely at the specific sites of Casp2-mediated proteolysis. Using seven selected protein cleavage sequences, we synthesized a peptide series of 53 novel molecules and studied them using in vitro pharmacology, molecular modeling, and crystallography. Regarding Casp2 selectivity, AcITV(Dab)D-CHO (23) and AcITV(Dap)D-CHO (26) demonstrated the best selectivity (1-6-fold), although these trends were only moderate. However, some analogous tetrapeptides, most notably AcDKVD-CHO (45), showed significantly increased Casp3 selectivities (>100-fold). Tetra- and tripeptides display decreased or no Casp2 affinity, supporting the assumption that a motif of five amino acids is required for efficient Casp2 inhibition. Overall, the results provide a reasonable basis for the development of both selective Casp2 and Casp3 inhibitors.


Asunto(s)
Caspasa 2 , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Proteolisis , Relación Estructura-Actividad
5.
J Neurosci ; 40(1): 220-236, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31685653

RESUMEN

Tau is a microtubule-associated protein that becomes dysregulated in a group of neurodegenerative diseases called tauopathies. Differential tau isoforms, expression levels, promoters, and disruption of endogenous genes in transgenic mouse models of tauopathy make it difficult to draw definitive conclusions about the biological role of tau in these models. We addressed this shortcoming by characterizing the molecular and cognitive phenotypes associated with the pathogenic P301L tau mutation (rT2 mice) in relation to a genetically matched transgenic mouse overexpressing nonmutant (NM) 4-repeat (4R) human tau (rT1 mice). Both male and female mice were included in this study. Unexpectedly, we found that 4R NM human tau (hTau) exhibited abnormal dynamics in young mice that were lost with the P301L mutation, including elevated protein stability and hyperphosphorylation, which were associated with cognitive impairment in 5-month-old rT1 mice. Hyperphosphorylation of NM hTau was observed as early as 4 weeks of age, and transgene suppression for the first 4 or 12 weeks of life prevented abnormal molecular and cognitive phenotypes in rT1, demonstrating that NM hTau pathogenicity is specific to postnatal development. We also show that NM hTau exhibits stronger binding to microtubules than P301L hTau, and is associated with mitochondrial abnormalities. Overall, our genetically matched mice have revealed that 4R NM hTau overexpression is pathogenic in a manner distinct from classical aging-related tauopathy, underlining the importance of assaying the effects of transgenic disease-related proteins at appropriate stages in life.SIGNIFICANCE STATEMENT Due to differences in creation of transgenic lines, the pathological properties of the P301L mutation confers to the tau protein in vivo have remained elusive, perhaps contributing to the lack of disease-modifying therapies for tauopathies. In an attempt to characterize P301L-specific effects on tau biology and cognition in novel genetically matched transgenic mouse models, we surprisingly found that nonmutant human tau has development-specific pathogenic properties of its own. Our findings indicate that overexpression of 4-repeat human tau during postnatal development is associated with excessive microtubule binding, which may disrupt important cellular processes, such as mitochondrial dynamics, leading to elevated stability and hyperphosphorylation of tau, and eventual cognitive impairments.


Asunto(s)
Trastornos de la Memoria/genética , Enfermedades Mitocondriales/genética , Proteínas tau/genética , Animales , Células Cultivadas , Femenino , Genes Sintéticos , Hipocampo/citología , Humanos , Mutación INDEL , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Transgénicos , Microtúbulos/fisiología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/fisiopatología , Mutación Missense , Estrés Oxidativo , Fenotipo , Fosforilación , Mutación Puntual , Prosencéfalo/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes , Secuencias Repetitivas de Aminoácido , Especificidad de la Especie , Regulación hacia Arriba , Proteínas tau/biosíntesis
6.
J Physiol ; 599(9): 2483-2498, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31194886

RESUMEN

KEY POINTS: Tau mislocalization to dendritic spines and associated postsynaptic deficits are mediated through different and non-overlapping phosphorylation sites. Tau mislocalization to dendritic spines depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminus. Postsynaptic dysfunction instead depends upon the phosphorylation of at least one of five residues in the proline-rich region of tau. The blockade of both glycogen synthetase kinase 3ß and cyclin-dependent kinase 5 is required to prevent P301L-induced tau mislocalization to dendritic spines, supporting redundant pathways that control tau mislocalization to spines. ABSTRACT: Tau protein consists of an N-terminal projection domain, a microtubule-binding domain and a C-terminal domain. In neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia, the hyperphosphorylation of tau changes its shape, binding partners and resulting function. An early consequence of tau phosphorylation by proline-directed kinases is postsynaptic dysfunction associated with the mislocalization of tau to dendritic spines. The specific phosphorylation sites leading to these abnormalities have not been elucidated. Here, using imaging and electrophysiological techniques to study cultured rat hippocampal neurons, we show that postsynaptic dysfunction results from a sequential process involving differential phosphorylation in the N-terminal and C-terminal domains. First, tau mislocalizes to dendritic spines, in a manner that depends upon the phosphorylation of either Ser396 or Ser404 in the C-terminal domain. The blockade of both glycogen synthetase kinase 3ß and cyclin-dependent kinase 5 prevents tau mislocalization to dendritic spines. Second, a reduction of functional AMPA receptors depends upon the phosphorylation of at least one of five residues (Ser202, Thr205, Thr212, Thr217 and Thr231) in the proline-rich region of the N-terminal domain. This is the first report of differential phosphorylation in distinct tau domains governing separate, but linked, steps leading to synaptic dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Animales , Células Cultivadas , Neuronas/metabolismo , Fosforilación , Ratas
7.
Alzheimers Dement ; 16(11): 1561-1567, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32543725

RESUMEN

The repeated failure of clinical trials targeting the amyloid beta (Aß) protein has challenged the amyloid cascade hypothesis. In this perspective, I discuss the biogenesis and biology of Aß, from the arrangement of its atoms to its effects on the human brain. I hope that this analysis will help guide future attempts to home in on this elusive therapeutic target.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Cuaternaria de Proteína
8.
Biol Proced Online ; 21: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019379

RESUMEN

Antibodies are commonly used to detect or isolate proteins from biological samples. Much attention has been paid to the potential for poorly-characterized antibodies to lead to misleading results, but antibody-independent artefacts may also occur. Here, we recount two examples of antibody-independent artefacts that have confounded the interpretation of results in our search for molecular entities associated with memory loss in Alzheimer's disease (AD). First, when using biotin-avidin systems for antibody detection, endogenous biotinylated proteins created spurious bands in Western blots of brain lysates from AD patients and transgenic mouse models of AD. These artefactual bands occurred in a transgene- and strain-dependent manner. A second, unexpected artefact occurred when Protein A-conjugated Sepharose beads were used to deplete lysates of endogenous immunoglobulins prior to immunopurification of target proteins. In these assays, Protein A shed from the beads, then bound to (and was eluted from) an immunoaffinity matrix designed to capture AD-related proteins. The Protein A then bound detection antibodies when the immunoaffinity eluates were analyzed by Western blot. Both of these artefacts-the endogenous biotinylated proteins and the Protein A artefact-can be monitored by including an "irrelevant" antibody as an experimental control (e.g., running a parallel protocol in which the antibody directed against the target of interest is replaced by a non-specific antibody).

9.
Alzheimers Dement ; 15(11): 1489-1502, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31653529

RESUMEN

OBJECTIVE: Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND: Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS: We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS: Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES: Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.


Asunto(s)
Enfermedad de Alzheimer/patología , Biomarcadores/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Tauopatías , Proteínas tau/metabolismo , Encéfalo/patología , Humanos , Indoles
10.
Am J Pathol ; 185(3): 651-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25553976

RESUMEN

Fabry disease is an X-linked lysosomal storage disease caused by deficient activity of α-galactosidase A and the resultant systemic accumulation of globotrioasylceramide (GL-3) and related glycolipids. α-Galactosidase A gene knockout (Gla KO) mice have no α-galactosidase A activity and progressively accumulate GL-3 in tissues and fluids, similarly to FD patients. The nature and temporal effects of the progressive substrate accumulation on tissue histology in these mice have not previously been characterized. Here, we report the pathology of young to old (3 to 17 months old) Gla KO mice and compare these changes with those in strain-matched control animals. Gla KO mice accumulated GL-3 in various tissues and fluids with age. Lysosomal GL-3 inclusions increased with age in multiple cell types, including renal epithelial, intestinal, and vascular smooth muscle cells, and neurons in trigeminal and dorsal root ganglia, as detected by light and electron microscopy. However, unlike the case for male FD patients with the type 1 classic phenotype, GL-3 inclusions were not detected in vascular endothelial cells or cardiomyocytes. The histological changes in Gla KO mice better resemble the type 2 later-onset phenotype observed in patients with residual α-galactosidase A activity. GL-3 accumulation in the small intestine and sensory ganglia of Gla KO mice provides a model for study of enteropathy and neuropathy in Fabry disease.


Asunto(s)
Enfermedad de Fabry/patología , Intestinos/patología , Riñón/patología , Músculo Liso Vascular/patología , alfa-Galactosidasa/genética , Animales , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Femenino , Humanos , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Neuronas/metabolismo , Neuronas/patología , Fenotipo , alfa-Galactosidasa/metabolismo
11.
Mol Med ; 21: 389-99, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25938659

RESUMEN

Fabry disease, an X-linked glycosphingolipid storage disorder, is caused by the deficient activity of α-galactosidase A (α-Gal A). This results in the lysosomal accumulation in various cell types of its glycolipid substrates, including globotriaosylceramide (GL-3) and lysoglobotriaosylceramide (globotriaosyl lysosphingolipid, lyso-GL-3), leading to kidney, heart, and cerebrovascular disease. To complement and potentially augment the current standard of care, biweekly infusions of recombinant α-Gal A, the merits of substrate reduction therapy (SRT) by selectively inhibiting glucosylceramide synthase (GCS) were examined. Here, we report the development of a novel, orally available GCS inhibitor (Genz-682452) with pharmacological and safety profiles that have potential for treating Fabry disease. Treating Fabry mice with Genz-682452 resulted in reduced tissue levels of GL-3 and lyso-GL-3 and a delayed loss of the thermal nociceptive response. Greatest improvements were realized when the therapeutic intervention was administered to younger mice before they developed overt pathology. Importantly, as the pharmacologic profiles of α-Gal A and Genz-682452 are different, treating animals with both drugs conferred the greatest efficacy. For example, because Genz-682452, but not α-Gal A, can traverse the blood-brain barrier, levels of accumulated glycosphingolipids were reduced in the brain of Genz-682452-treated but not α-Gal A-treated mice. These results suggest that combining substrate reduction and enzyme replacement may confer both complementary and additive therapeutic benefits in Fabry disease.


Asunto(s)
Carbamatos/administración & dosificación , Enfermedad de Fabry/tratamiento farmacológico , Glucosiltransferasas/metabolismo , Glucolípidos/metabolismo , Quinuclidinas/administración & dosificación , Esfingolípidos/metabolismo , Trihexosilceramidas/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Modelos Animales de Enfermedad , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Glucosiltransferasas/antagonistas & inhibidores , Humanos , Ratones , alfa-Galactosidasa/administración & dosificación , alfa-Galactosidasa/metabolismo
12.
Brain ; 136(Pt 5): 1383-98, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23576130

RESUMEN

Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-ß aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-ß in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-ß aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-ß aggregates, including soluble amyloid-ß oligomers. Different soluble amyloid-ß oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-ß oligomers previously described in mouse models-amyloid-ß trimers, Aß*56 and amyloid-ß dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-ß trimers appear to be the fundamental amyloid-ß assembly unit of Aß*56 and are present in young mice prior to memory decline, amyloid-ß trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aß*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-ß dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aß*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aß*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-ß dimers or amyloid-ß trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-ß dimers, but the lowest levels of Aß*56 and amyloid-ß trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aß*56 increased ahead of amyloid-ß dimers or amyloid-ß trimers, and pathological tau proteins and postsynaptic proteins correlated with Aß*56, but not amyloid-ß dimers or amyloid-ß trimers. We propose that Aß*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Envejecimiento/fisiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Química Encefálica/fisiología , Niño , Preescolar , Cognición/fisiología , Estudios de Cohortes , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Placa Amiloide/etiología , Placa Amiloide/patología , Multimerización de Proteína , Adulto Joven
13.
iScience ; 27(3): 109239, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433923

RESUMEN

Amyloid-ß (Aß) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aß peptide. Aß∗56 is a non-fibrillar Aß assembly that is linked to memory deficits. Previous studies did not decipher specific forms of Aß present in Aß∗56. Here, we confirmed the memory-impairing characteristics of Aß∗56 and extended its biochemical characterization. We used anti-Aß(1-x), anti-Aß(x-40), anti-Aß(x-42), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576, 5xFAD, and APP/TTA mice. In Tg2576, Aß∗56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-dependent, water-soluble, brain-derived oligomer containing canonical Aß(1-40). In 5xFAD, Aß∗56 is composed of Aß(1-42), whereas in APP/TTA, it contains both Aß(1-40) and Aß(1-42). When injected into the hippocampus of wild-type mice, Aß∗56 derived from Tg2576 mice impairs memory. The unusual stability of this oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.

14.
Mol Ther ; 20(10): 1893-901, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22828503

RESUMEN

Niemann-Pick disease Type A (NPA) is a neuronopathic lysosomal storage disease (LSD) caused by the loss of acid sphingomyelinase (ASM). The goals of the current study are to ascertain the levels of human ASM that are efficacious in ASM knockout (ASMKO) mice, and determine whether these levels can be attained in non-human primates (NHPs) using a multiple parenchymal injection strategy. Intracranial injections of different doses of AAV1-hASM in ASMKO mice demonstrated that only a small amount of enzyme (<0.5 mg hASM/g tissue) was sufficient to increase survival, and that increasing the amount of hASM did not enhance this survival benefit until a new threshold level of >10 mg hASM/g tissue was reached. In monkeys, injection of 12 tracts of AAV1-hASM resulted in efficacious levels of enzyme in broad regions of the brain that was aided, in part, by axonal transport of adeno-associated virus (AAV) and movement through the perivascular space. This study demonstrates that a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain that are highly affected in NPA patients. The information from this study might help design new AAV-mediated enzyme replacement protocols for NPA and other neuronopathic LSDs in future clinical trials.


Asunto(s)
Terapia Genética , Enfermedad de Niemann-Pick Tipo A/terapia , Esfingomielina Fosfodiesterasa/deficiencia , Animales , Encéfalo/enzimología , Dependovirus/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos/genética , Inyecciones , Macaca fascicularis , Masculino , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo A/patología , Primates/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo
15.
Transl Res ; 254: 34-40, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36343883

RESUMEN

Targeting amyloid-ß plaques and tau tangles has failed to provide effective treatments for Alzheimer's disease and related dementias (ADRD). A more fruitful pathway to ADRD therapeutics may be the development of therapies that target common signaling pathways that disrupt synaptic connections and impede communication between neurons. In this review, we present our characterization of a signaling pathway common to several neurological diseases featuring dementia including Alzheimer's disease, frontotemporal dementia, Lewy body dementia, and Huntington's disease. This signaling pathway features the cleavage of tau by caspase-2 (Casp2) yielding Δtau314 (Casp2/tau/Δtau314). Through a not yet fully delineated mechanism, Δtau314 catalyzes the mislocalization and accumulation of tau to dendritic spines leading to the internalization of AMPA receptors and the concomitant weakening of synaptic transmission. Here, we review the accumulated evidence supporting Casp2 as a druggable target and its importance in ADRD. Additionally, we provide a brief overview of our initial medicinal chemistry explorations aimed at the preparation of novel, brain penetrant Casp2 inhibitors. We anticipate that this review will spark broader interest in Casp2 as a target for restoring synaptic dysfunction in ADRD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Caspasa 2/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo
16.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993768

RESUMEN

Amyloid-ß (Aß) oligomers consist of fibrillar and non-fibrillar soluble assemblies of the Aß peptide. Tg2576 human amyloid precursor protein (APP)-expressing transgenic mice modeling Alzheimer's disease produce Aß*56, a non-fibrillar Aß assembly that has been shown by several groups to relate more closely to memory deficits than plaques. Previous studies did not decipher specific forms of Aß present in Aß*56. Here, we confirm and extend the biochemical characterization of Aß*56. We used anti-Aß(1-x), anti-Aß(x-40), and A11 anti-oligomer antibodies in conjunction with western blotting, immunoaffinity purification, and size-exclusion chromatography to probe aqueous brain extracts from Tg2576 mice of different ages. We found that Aß*56 is a ∼56-kDa, SDS-stable, A11-reactive, non-plaque-related, water-soluble, brain-derived oligomer containing canonical Aß(1-40) that correlates with age-related memory loss. The unusual stability of this high molecular-weight oligomer renders it an attractive candidate for studying relationships between molecular structure and effects on brain function.

17.
Eur J Med Chem ; 259: 115632, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37453329

RESUMEN

Recent Alzheimer's research has shown increasing interest in the caspase-2 (Casp2) enzyme. However, the available Casp2 inhibitors, which have been pentapeptides or peptidomimetics, face challenges for use as CNS drugs. In this study, we successfully screened a 1920-compound chloroacetamide-based, electrophilic fragment library from Enamine. Our two-point dose screen identified 64 Casp2 hits, which were further evaluated in a ten-point dose-response study to assess selectivity over Casp3. We discovered compounds with inhibition values in the single-digit micromolar and sub-micromolar range, as well as up to 32-fold selectivity for Casp2 over Casp3. Target engagement analysis confirmed the covalent-irreversible binding of the selected fragments to Cys320 at the active site of Casp2. Overall, our findings lay a strong foundation for the future development of small-molecule Casp2 inhibitors.


Asunto(s)
Caspasa 2 , Inhibidores de Caspasas , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Dominio Catalítico , Inhibidores de Caspasas/química
18.
J Alzheimers Dis ; 92(1): 241-260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744338

RESUMEN

BACKGROUND: Phosphorylated cytoplasmic tau inclusions correlate with and precede cognitive deficits in Alzheimer's disease (AD). However, pathological tau accumulation and relationships to synaptic changes remain unclear. OBJECTIVE: To address this, we examined postmortem brain from 50 individuals with the full spectrum of AD (clinically and neuropathologically). Total tau, pTau231, and AMPA GluR1 were compared across two brain regions (entorhinal and middle frontal cortices), as well as clinically stratified groups (control, amnestic mild cognitive impairment, AD dementia), NIA-AA Alzheimer's Disease Neuropathologic Change designations (Not, Low, Intermediate, High), and Braak tangle stages (1-6). Significant co-existing pathology was excluded to isolate changes attributed to pathologic AD. METHODS: Synaptosomal fractionation and staining were performed to measure changes in total Tau, pTau231, and AMPA GluR1. Total Tau and pTau231 were quantified in synaptosomal fractions using Quanterix Simoa HD-X. RESULTS: Increasing pTau231 in frontal postsynaptic fractions correlated positively with increasing clinical and neuropathological AD severity. Frontal cortex is representative of early AD, as it does not become involved by tau tangles until late in AD. Entorhinal total tau was significantly higher in the amnestic mild cognitive impairment group when compared to AD, but only after accounting for AD associated synaptic changes. Alterations in AMPA GluR1 observed in the entorhinal cortex, but not middle frontal cortex, suggest that pTau231 mislocalization and aggregation in postsynaptic structures may impair glutamatergic signaling by promoting AMPA receptor dephosphorylation and internalization. CONCLUSION: Results highlight the potential effectiveness of early pharmacological interventions targeting pTau231 accumulation at the postsynaptic density.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Densidad Postsináptica/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Encéfalo/patología , Disfunción Cognitiva/patología
19.
Mol Genet Metab ; 105(4): 621-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22366055

RESUMEN

Niemann Pick type C (NPC) disease is a progressive neurodegenerative disease caused by mutations in NPC1 or NPC2, the gene products of which are involved in cholesterol transport in late endosomes. NPC is characterized by an accumulation of cholesterol, sphingomyelin and glycosphingolipids in the visceral organs, primarily the liver and spleen. In the brain, there is a redistribution of unesterified cholesterol and a concomitant accumulation of glycosphingolipids. It has been suggested that reducing the aberrant lysosomal storage of glycosphingolipids in the brain by a substrate reduction therapy (SRT) approach may prove beneficial. Inhibiting glucosylceramide synthase (GCS) using the iminosugar-based inhibitor miglustat (NB-DNJ) has been reported to increase the survival of NPC mice. Here, we tested the effects of Genz-529468, a more potent iminosugar-based inhibitor of GCS, in the NPC mouse. Oral administration of Genz-529468 or NB-DNJ to NPC mice improved their motor function, reduced CNS inflammation, and increased their longevity. However, Genz-529468 offered a wider therapeutic window and better therapeutic index than NB-DNJ. Analysis of the glycolipids in the CNS of the iminosugar-treated NPC mouse revealed that the glucosylceramide (GL1) but not the ganglioside levels were highly elevated. This increase in GL1 was likely caused by the off-target inhibition of the murine non-lysosomal glucosylceramidase, Gba2. Hence, the basis for the observed effects of these inhibitors in NPC mice might be related to their inhibition of Gba2 or another unintended target rather than a result of substrate reduction.


Asunto(s)
Encéfalo/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Glucosiltransferasas/antagonistas & inhibidores , Iminoazúcares/uso terapéutico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/mortalidad , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Glucosilceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo C/enzimología , Tasa de Supervivencia
20.
Nature ; 440(7082): 352-7, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16541076

RESUMEN

Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice (< 6 months old) have normal memory and lack neuropathology, middle-aged mice (6-14 months old) develop memory deficits without neuronal loss, and old mice (> 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Encéfalo/fisiopatología , Memoria/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Ratones , Peso Molecular , Placa Amiloide/química , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Estructura Cuaternaria de Proteína , Ratas , Solubilidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA