Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 185(10): 1661-1675.e16, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35483373

RESUMEN

ß-arrestins bind G protein-coupled receptors to terminate G protein signaling and to facilitate other downstream signaling pathways. Using single-molecule fluorescence resonance energy transfer imaging, we show that ß-arrestin is strongly autoinhibited in its basal state. Its engagement with a phosphopeptide mimicking phosphorylated receptor tail efficiently releases the ß-arrestin tail from its N domain to assume distinct conformations. Unexpectedly, we find that ß-arrestin binding to phosphorylated receptor, with a phosphorylation barcode identical to the isolated phosphopeptide, is highly inefficient and that agonist-promoted receptor activation is required for ß-arrestin activation, consistent with the release of a sequestered receptor C tail. These findings, together with focused cellular investigations, reveal that agonism and receptor C-tail release are specific determinants of the rate and efficiency of ß-arrestin activation by phosphorylated receptor. We infer that receptor phosphorylation patterns, in combination with receptor agonism, synergistically establish the strength and specificity with which diverse, downstream ß-arrestin-mediated events are directed.


Asunto(s)
Fosfopéptidos , Receptores Acoplados a Proteínas G , Fosfopéptidos/metabolismo , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo
2.
Nature ; 629(8011): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632411

RESUMEN

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Sensibles al Calcio , Humanos , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/química , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sitios de Unión , Estructura Secundaria de Proteína , Especificidad por Sustrato
3.
J Am Chem Soc ; 146(14): 9564-9574, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557024

RESUMEN

The serotonergic transmitter system plays fundamental roles in the nervous system in neurotransmission, synaptic plasticity, pathological processes, and therapeutic effects of antidepressants and psychedelics, as well as in the gastrointestinal and circulatory systems. We introduce a novel small molecule fluorescent agent, termed SERTlight, that specifically labels serotonergic neuronal cell bodies, dendrites, and axonal projections as a serotonin transporter (SERT) fluorescent substrate. SERTlight was developed by an iterative molecular design process, based on an aminoethyl-quinolone system, to integrate structural elements that impart SERT substrate activity, sufficient fluorescent brightness, and a broad absence of pharmacological activity, including at serotonin (5-hydroxytryptamine, 5HT) receptors, other G protein-coupled receptors (GPCRs), ion channels, and monoamine transporters. The high labeling selectivity is not achieved by high affinity binding to SERT itself but rather by a sufficient rate of SERT-mediated transport of SERTlight, resulting in accumulation of these molecules in 5HT neurons and yielding a robust and selective optical signal in the mammalian brain. SERTlight provides a stable signal, as it is not released via exocytosis nor by reverse SERT transport induced by 5HT releasers such as MDMA. SERTlight is optically, pharmacologically, and operationally orthogonal to a wide range of genetically encoded sensors, enabling multiplexed imaging. SERTlight enables labeling of distal 5HT axonal projections and simultaneous imaging of the release of endogenous 5HT using the GRAB5HT sensor, providing a new versatile molecular tool for the study of the serotonergic system.


Asunto(s)
Colorantes Fluorescentes , Serotonina , Animales , Serotonina/metabolismo , Colorantes Fluorescentes/metabolismo , Neuronas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
4.
Nat Methods ; 18(4): 397-405, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686301

RESUMEN

Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells. We leverage this in-cell smFRET approach to show agonist-induced structural dynamics within individual metabotropic glutamate receptor dimers. We apply these methods to representative class A, B and C receptors, finding evidence for receptor monomers, density-dependent dimers and constitutive dimers, respectively.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Receptores Acoplados a Proteínas G/metabolismo , Dimerización , Conformación Proteica , Receptores Acoplados a Proteínas G/química
5.
J Biol Chem ; 298(10): 102458, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063995

RESUMEN

Glutamate acts at eight metabotropic glutamate (mGlu) receptor subtypes expressed in a partially overlapping fashion in distinct brain circuits. Recent evidence indicates that specific mGlu receptor protomers can heterodimerize and that these heterodimers can exhibit different pharmacology when compared to their homodimeric counterparts. Group III mGlu agonist-induced suppression of evoked excitatory potentials and induction of long-term potentiation at Schaffer collateral-CA1 (SC-CA1) synapses in the rodent hippocampus can be blocked by the selective mGlu7 negative allosteric modulator (NAM), ADX71743. Curiously, a different mGlu7 NAM, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one, failed to block these responses in brain slices despite its robust activity at mGlu7 homodimers in vitro. We hypothesized that this might result from heterodimerization of mGlu7 with another mGlu receptor protomer and focused on mGlu8 as a candidate given the reported effects of mGlu8-targeted compounds in the hippocampus. Here, we used complemented donor acceptor-resonance energy transfer to study mGlu7/8 heterodimer activation in vitro and observed that ADX71743 blocked responses of both mGlu7/7 homodimers and mGlu7/8 heterodimers, whereas 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one only antagonized responses of mGlu7/7 homodimers. Taken together with our electrophysiology observations, these results suggest that a receptor with pharmacology consistent with an mGlu7/8 heterodimer modulates the activity of SC-CA1 synapses. Building on this hypothesis, we identified two additional structurally related mGlu7 NAMs that also differ in their activity at mGlu7/8 heterodimers, in a manner consistent with their ability to inhibit synaptic transmission and plasticity at SC-CA1. Thus, we propose that mGlu7/8 heterodimers are a key molecular target for modulating the activity of hippocampal SC-CA1 synapses.


Asunto(s)
Ácido Glutámico , Receptores de Glutamato Metabotrópico , Sinapsis , Hipocampo/metabolismo , Potenciación a Largo Plazo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo , Animales , Roedores , Saccharomyces cerevisiae , Electrofisiología
6.
Proc Natl Acad Sci U S A ; 117(39): 24305-24315, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32913060

RESUMEN

Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.


Asunto(s)
Colorantes Fluorescentes/química , Línea Celular , Fluorescencia , Humanos , Microscopía Fluorescente
7.
J Biol Chem ; 296: 100503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684444

RESUMEN

G protein-coupled receptors (GPCRs) signal through activation of G proteins and subsequent modulation of downstream effectors. More recently, signaling mediated by ß-arrestin has also been implicated in important physiological functions. This has led to great interest in the identification of biased ligands that favor either G protein or ß-arrestin-signaling pathways. However, nearly all screening techniques for measuring ß-arrestin recruitment have required C-terminal receptor modifications that can in principle alter protein interactions and thus signaling. Here, we have developed a novel luminescence-based assay to measure ß-arrestin recruitment to the membrane or early endosomes by unmodified receptors. Our strategy uses NanoLuc, an engineered luciferase from Oplophorus gracilirostris (deep-sea shrimp) that is smaller and brighter than other well-established luciferases. Recently, several publications have explored functional NanoLuc split sites for use in complementation assays. We have identified a unique split site within NanoLuc and fused the corresponding N-terminal fragment to either a plasma membrane or early endosome tether and the C-terminal fragment to ß-arrestins, which form the basis for the MeNArC and EeNArC assays, respectively. Upon receptor activation, ß-arrestin is recruited to the membrane and subsequently internalized in an agonist concentration-dependent manner. This recruitment promotes complementation of the two NanoLuc fragments, thereby reconstituting functional NanoLuc, allowing for quantification of ß-arrestin recruitment with a single luminescence signal. Our assay avoids potential artifacts related to C-terminal receptor modification and has promise as a new generic assay for measuring ß-arrestin recruitment to diverse GPCR types in heterologous or native cells.


Asunto(s)
Membrana Celular/metabolismo , Luciferasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Bioensayo/métodos , Células Cultivadas , Humanos , Ligandos , Unión Proteica , Transducción de Señal , beta-Arrestinas/química
8.
Biochemistry ; 56(1): 143-148, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27957837

RESUMEN

Heme peptides and their derivatives, also called microperoxidases (MPs), are employed as heme protein active site models, catalysts, and charge-transfer chromophores. In this work, two approaches to the biosynthesis of novel MPs are described. In one method, heme peptides are expressed as C-terminal tags to the protein azurin and the MP is liberated by proteolytic cleavage by an endopeptidase. In an alternative approach, heme peptides are expressed as N-terminal tags to the cysteine protease domain (CPD) of the Vibrio cholerae MARTX toxin. Once activated by inositol hexakisphosphate, CPD undergoes autocleavage at an N-terminal leucine residue to liberate the MP. Purification is aided by use of a histidine-immobilized Sepharose column that binds exposed heme [Asher, W. A., and Bren, K. L. (2010) Protein Sci. 19, 1830-1839]. These methods provide efficient and adaptable routes to the preparation of a wide range of biosynthetic heme peptides.


Asunto(s)
Hemo/metabolismo , Péptidos/metabolismo , Peroxidasas/biosíntesis , Proteínas Recombinantes/biosíntesis , Secuencia de Aminoácidos , Azurina/química , Azurina/genética , Azurina/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Hemo/química , Hemo/genética , Modelos Moleculares , Estructura Molecular , Péptidos/química , Péptidos/genética , Peroxidasas/química , Peroxidasas/genética , Conformación Proteica , Proteínas Recombinantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Front Cell Dev Biol ; 11: 1184077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655158

RESUMEN

Single-molecule FRET (smFRET) is a powerful imaging platform capable of revealing dynamic changes in the conformation and proximity of biological molecules. The expansion of smFRET imaging into living cells creates both numerous new research opportunities and new challenges. Automating dataset curation processes is critical to providing consistent, repeatable analysis in an efficient manner, freeing experimentalists to advance the technical boundaries and throughput of what is possible in imaging living cells. Here, we devise an automated solution to the problem of multiple particles entering a region of interest, an otherwise labor-intensive and subjective process that had been performed manually in our previous work. The resolution of these two issues increases the quantity of FRET data and improves the accuracy with which FRET distributions are generated, increasing knowledge about the biological functions of the molecules under study. Our automated approach is straightforward, interpretable, and requires only localization and intensity values for donor and acceptor channel signals, which we compute through our previously published smCellFRET pipeline. The development of our automated approach is informed by the insights of expert experimentalists with extensive experience inspecting smFRET trajectories (displacement and intensity traces) from live cells. We test our automated approach against our recently published research on the metabotropic glutamate receptor 2 (mGluR2) and reveal substantial similarities, as well as potential shortcomings in the manual curation process that are addressable using the algorithms we developed here.

10.
Mol Metab ; 74: 101757, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348738

RESUMEN

OBJECTIVE: Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways. Whereas IP3 signaling is to be expected for the mainly Gq-coupled FFAR1, the mechanism behind FFAR1-induced cAMP accumulation remains unclear, although originally proposed to be Gs mediated. METHODS AND RESULTS: When stimulated with AM5262, we observe that FFAR1 can activate the majority of the Gα proteins, except - surprisingly - members of the Gs family. AM5262-induced FFAR1-mediated transcriptional activation through cAMP response element (CREB) was blocked by the specific Gq inhibitor, YM253890. Furthermore, in Gq-deficient cells no CREB signal was observed unless Gq or G11 was reintroduced by transfection. By qPCR we determined that adenylate cyclase 2 (Adcy2) was highly expressed and enriched relative to the nine other Adcys in pro-glucagon expressing enteroendocrine cells. Co-transfection with ADCY2 increased the FFAR1-induced cAMP response 4-5-fold in WT HEK293 cells, an effect fully inhibited by YM253890. Moreover, co-transfection with ADCY2 had no effect in Gq-deficient cells without reintroduction of either Gq or G11. Importantly, although both AM5262/FFAR1 and isoproterenol/ß2 adrenergic receptor (ß2AR) induced cAMP production was lost in Gs-deficient cells, only the ß2AR response was rescued by Gs transfection, whereas co-transfection with ADCY2 was required to rescue the FFAR1 cAMP response. In situ hybridization demonstrated a high degree of co-expression of ADCY2 and FFAR1 in enteroendocrine cells throughout the intestine. Finally, in the enteroendocrine STC-1 and GLUTag cell lines AM5262-induced cAMP accumulation and GLP-1 secretion were both blocked by YM253890. CONCLUSIONS: Our results show that Gq signaling is responsible not only for the IP3/Ca2+ but also the cAMP response, which together are required for the highly efficacious hormone secretion induced by second-generation FFAR1 agonists - and that ADCY2 presumably mediates the Gq-driven cAMP response.


Asunto(s)
Adenilil Ciclasas , Ácidos Grasos no Esterificados , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Péptido 1 Similar al Glucagón/metabolismo
11.
Methods Cell Biol ; 166: 43-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34752339

RESUMEN

The four vertebrate arrestins play a key role in the desensitization and internalization of G protein-coupled receptors (GPCRs) and also mediate receptor-dependent signaling. Recent work has shown that bias for arrestin vs G protein signaling could offer certain therapeutic advantages (or disadvantages) in different systems, making assays that measure arrestin binding to receptors important for drug discovery efforts. Herein, we briefly review several commonly used techniques for measuring arrestin binding to receptors, as well as provide an in-depth and methodologically focused review of two methods that do not require receptor modification. The first approach measures direct binding between purified arrestin and rhodopsin, and the second measures the recruitment of arrestin to receptors in living cells.


Asunto(s)
Arrestina , Receptores Acoplados a Proteínas G , Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina , Transducción de Señal
12.
J Med Chem ; 64(18): 13873-13892, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34505767

RESUMEN

Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3 group with phenyl (4), methyl (5), or 3'-furanyl [6 (SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine. 6 (SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-protein Emax ≈ 10%) in cell lines while yet attaining maximal antinociception in vivo with reduced opioid liabilities.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides mu/agonistas , Alcaloides de Triptamina Secologanina/farmacología , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/síntesis química , Analgésicos Opioides/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo , Alcaloides de Triptamina Secologanina/efectos adversos , Alcaloides de Triptamina Secologanina/síntesis química , Alcaloides de Triptamina Secologanina/metabolismo , Relación Estructura-Actividad
13.
Methods Mol Biol ; 1177: 17-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24943311

RESUMEN

Protein affinity purification techniques are widely used for isolating pure target proteins for biochemical and structural characterization. Herein, we describe the protocol for affinity-based purification of proteins expressed in Escherichia coli that uses the coordination of a peptide tag covalently modified with heme c, known as a heme-tag, to an L-histidine immobilized Sepharose resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. In addition, we describe methods for specifically detecting heme-tagged proteins in SDS-PAGE gels using a heme-staining procedure and for quantifying the proteins using a pyridine hemochrome assay.


Asunto(s)
Cromatografía de Afinidad/métodos , Hemo/análogos & derivados , Biología Molecular/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Hemo/química , Hemo/genética , Histidina/química , Biosíntesis de Proteínas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
14.
J Phys Chem Lett ; 4(16): 2727-2733, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24116268

RESUMEN

Conformational dynamics of proteins are important for function. However, obtaining information about specific conformations is difficult for samples displaying heterogeneity. Here, time-resolved fluorescence resonance energy transfer is used to characterize the folding of single cytochrome c molecules. In particular, measurements of the fluorescence lifetimes of individual cytochrome c molecules labeled with a single dye that is quenched by energy transfer to the heme were used to monitor conformational transitions of the protein under partially denaturing conditions. These studies indicate significantly more conformational heterogeneity than has been described previously. Importantly, the use of a purified singly-labeled sample made a direct comparison to ensemble data possible. The distribution of lifetimes of single-proteins was compared to the distribution of lifetimes determined from analysis of ensemble lifetime fluorescence data. The results show broad agreement between single-molecule and ensemble data, with a similar range of lifetimes. However, the single-molecule data reveal greater conformational heterogeneity.

15.
Chem Commun (Camb) ; 48(67): 8344-6, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22792539

RESUMEN

It is shown that cytochrome c heme lyase (CCHL) attaches heme covalently to peptides composed of the N-terminal segment of cyt c fused to a non-heme containing protein, lending insight into the substrate specificity of CCHL and providing a new route to artificial heme proteins.


Asunto(s)
Grupo Citocromo c/química , Hemo/química , Liasas/química , Péptidos/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Grupo Citocromo c/metabolismo , Hemo/metabolismo , Caballos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/metabolismo , Especificidad por Sustrato
16.
Protein Sci ; 19(10): 1830-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20665691

RESUMEN

We report a novel affinity-based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L-histidine-immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme-tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200-500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag-HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.


Asunto(s)
Hemo/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Azurina/genética , Azurina/aislamiento & purificación , Azurina/metabolismo , Unión Competitiva , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Hemo/análogos & derivados , Hemo/química , Hemo/genética , Histidina/genética , Histidina/metabolismo , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de Unión a Maltosa/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Resinas Sintéticas , Sefarosa , Espectrofotometría/métodos
17.
J Chem Inf Model ; 47(5): 1906-12, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17715910

RESUMEN

In this study, we have developed a two model system to mimic the active and inactive states of a G-protein coupled receptor specifically the alpha1A adrenergic receptor. We have docked two agonists, epinephrine (phenylamine type) and oxymetazoline (imidazoline type), as well as two antagonists, prazosin and 5-methylurapidil, into two alpha1A receptor models, active and inactive. The best docking complexes for both agonists had hydrophilic interactions with D106, while neither antagonist did. Prazosin and oxymetazoline had hydrophobic interactions with F308 and F312. We predict from our study that the active state is stabilized by the interaction of F193 with I114, L197, V278, F281, and V282. The active state is further stabilized by the interaction of F312 with L75, V79, and L80. We also predict that the inactive state of the receptor is stabilized by the interaction of F312 with W102, F288, and M292.


Asunto(s)
Antagonistas Adrenérgicos alfa/farmacología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas Adrenérgicos alfa/química , Epinefrina/química , Epinefrina/farmacología , Ligandos , Modelos Moleculares , Nitrógeno/química , Oximetazolina/química , Oximetazolina/farmacología , Piperazinas/química , Piperazinas/farmacología , Prazosina/química , Prazosina/farmacología , Conformación Proteica , Rodopsina/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA