RESUMEN
High energy-density supercapacitors (SCs) with long operating life, cost-effective, and competitive cycling performance is attracted great research attention to competing in the requirements of the modern age. However, despite these benefits, SC hampers inadequate rate-capability and structural deterioration, which primarily affects its commercialization. Herein, ultra-thin two-dimensional (2D) ZnCo2O4nanosheets arein situanchored on the conductive surface of nickel foam (denoted as ZCO@NF) by hydrothermal process. The binder-free ZCO@NF is employed as an electrode for SCs and shows impressive charge storage properties. ZCO@NF electrode exhibited a high capacitance of 1250 (750) and 733 F g-1(440 C g-1) at 2.5 and 20 A g-1, respectively, demonstrating the outstanding rate-capability of 58.6% even at 8 times larger current density. Furthermore, the ZCO@NF electrode exhibits admirable capacitance retention of 96.5% after 10 000 cycles. This impressive performance of the ZCO@NF electrode is attributed to the high surface area which gives a short distance for ion/electron transfer, a high conductivity with extensive electroactive cities, and strong structural stability. The binder-free approach provides a strong relationship between the current collector and the active material, which turns into improved electrochemical operation as an electrode material for SCs.
RESUMEN
Titanium dioxide (TiO2) is one of the most widely used photocatalysts due to its physical and chemical properties. In this study, hydrogen energy production using TiO2- and titanate-based photocatalysts is discussed along with the pros and cons. The mechanism of the photocatalysis has been elaborated to pinpoint the photocatalyst for better performance. The chief characteristics and limitations of the TiO2 photocatalysts have been assessed. Further, TiO2-based photocatalysts modified with a transition metal, transition metal oxide, noble metal, graphitic carbon nitride, graphene, etc. have been reviewed. This study will provide a basic understanding to beginners and detailed knowledge to experts in the field to optimize the TiO2-based photocatalysts for hydrogen production.
RESUMEN
Semiconductor materials show a restricted degradation response to organic pollutants due to limited photocatalytic activity under visible light. Therefore, researchers have devoted much attention to novel and effective nanocomposite materials. For the first time, herein, a novel nano-sized semiconductor calcium ferrite modified by carbon quantum dots (CaFe2O4/CQDs) photocatalyst is fabricated via simple hydrothermal treatment for the degradation of aromatic dye using a visible light source. The crystalline nature, structure, morphology, and optical parameters of each of the synthesized materials were investigated using X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The nanocomposite exhibits excellent photocatalytic performance (90% degradation) against Congo red (CR) dye. In addition, a mechanism for CaFe2O4/CQDs improving photocatalytic performance has been proposed. The CQDs in the CaFe2O4/CQD nanocomposite are considered to act as an electron pool and transporter, as well as a strong energy transfer material, during photocatalysis. CaFe2O4/CQDs appear to be a promising and cost-effective nanocomposite for dye-contaminated water purification, according to the findings of this study.