Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 32(23): 3263-3275, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37658769

RESUMEN

The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not ß-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Animales , Proteína Coatómero/genética , Unión Proteica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Atrofia Muscular Espinal/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nucleolina
2.
Hum Mol Genet ; 26(5): 932-941, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062667

RESUMEN

Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease that is the leading genetic cause of infantile death. It is caused by a severe deficiency of the ubiquitously expressed Survival Motor Neuron (SMN) protein. SMA is characterized by α-lower motor neuron loss and muscle atrophy, however, there is a growing list of tissues impacted by a SMN deficiency beyond motor neurons. The non-neuronal defects are observed in the most severe Type I SMA patients and most of the widely used SMA mouse models, however, as effective therapeutics are developed, it is unclear whether additional symptoms will be uncovered in longer lived patients. Recently, the immune system and inflammation has been identified as a contributor to neurodegenerative diseases such as ALS. To determine whether the immune system is comprised in SMA, we analyzed the spleen and immunological components in SMA mice. In this report, we identify: a significant reduction in spleen size in multiple SMA mouse models and a pathological reduction in red pulp and extramedullary hematopoiesis. Additionally, red pulp macrophages, a discrete subset of yolk sac-derived macrophages, were found to be altered in SMA spleens even in pre-symptomatic post-natal day 2 animals. These cells, which are involved in iron metabolism and the phagocytosis of erythrocytes and blood-borne pathogens are significantly reduced prior to the development of the neurodegenerative hallmarks of SMA, implying a differential role of SMN in myeloid cell ontogeny. Collectively, these results demonstrate that SMN deficiency impacts spleen development and suggests a potential role for immunological development in SMA.


Asunto(s)
Desarrollo Embrionario/genética , Inflamación/genética , Atrofia Muscular Espinal/genética , Bazo/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Desarrollo Embrionario/inmunología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Eritrocitos/patología , Hematopoyesis Extramedular , Humanos , Inflamación/inmunología , Inflamación/patología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neuronas Motoras/inmunología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/inmunología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fagocitosis/genética , Fagocitosis/inmunología , Bazo/crecimiento & desarrollo , Bazo/inmunología , Bazo/patología , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis
3.
Biochem Biophys Res Commun ; 514(2): 530-537, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31060774

RESUMEN

We report that expression of the α-COP protein rescues disease phenotype in a severe mouse model of Spinal Muscular Atrophy (SMA). Lentiviral particles expressing α-COP were injected directly into the testes of genetically pure mouse strain of interest resulting in infection of the spermatagonial stem cells. α-COP was stably expressed in brain, skeletal muscle, and spinal cord without altering SMN protein levels. SMA mice transgenic for α-COP live significantly longer than their non-transgenic littermates, and showed increased body mass and normal muscle morphology at postnatal day 15. We previously reported that binding between SMN and α-COP is required for restoration of neurite outgrowth in cells lacking SMN, and we report similar finding here. Lentiviral-mediated transgenic expression of SMN where the dilysine domain in exon 2b was mutated was not able to rescue the SMA phenotype despite robust expression of the mutant SMN protein in brain, muscle and spinal cord. These results demonstrate that α-COP is a validated modifier of SMA disease phenotype in a mammalian, vertebrate model and is a potential target for development of future SMN-independent therapeutic interventions.


Asunto(s)
Proteína Coatómero/genética , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína Coatómero/metabolismo , Modelos Animales de Enfermedad , Exones , Femenino , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/patología , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Mutación , Fenotipo , Unión Proteica , Transducción de Señal , Médula Espinal/patología , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
4.
Neurobiol Aging ; 101: 57-69, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582567

RESUMEN

Understanding the cellular processes that lead to Alzheimer's disease (AD) is critical, and one key lies in the genetics of families with histories of AD. Mutations a complex known as COPI were found in families with AD. The COPI complex is involved in protein processing and trafficking. Intriguingly, several recent publications have found components of the COPI complex can affect the metabolism of pathogenic AD proteins. We reduced levels of the COPI subunit α-COP, altering maturation and cleavage of amyloid precursor protein (APP), resulting in decreased release of Aß-42 and decreased accumulation of the AICD. Depletion of α-COP reduced uptake of proteopathic Tau seeds and reduces intracellular Tau self-association. Expression of AD-associated mutant α-COP altered APP processing, resulting in increased release of Aß-42 and increased intracellular Tau aggregation and release of Tau oligomers. These results show that COPI coatomer function modulates processing of both APP and Tau, and expression of AD-associated α-COP confers a toxic gain of function, resulting in potentially pathogenic changes in both APP and Tau.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/fisiología , Proteína Coatómero/genética , Proteína Coatómero/fisiología , Mutación/genética , Mutación/fisiología , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células Cultivadas , Ratones
5.
PLoS One ; 11(10): e0163954, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27736905

RESUMEN

Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to screen for SMN-dependent mRNA processing changes that occur following acute depletion of SMN. We identified SMN-dependent splicing changes, including an intron retention event that results in the production of a truncated Rit1 transcript. This intron-retained transcript is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neurite extension. These results reveal new insights into the biological consequence of SMN-dependent splicing in motor neuron-like cells.


Asunto(s)
Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Empalme del ARN , ARN Mensajero/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Exones , Femenino , Regulación de la Expresión Génica , Intrones , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA