Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Stimul ; 16(4): 1072-1082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37385540

RESUMEN

BACKGROUND: Humans routinely shift their sleepiness and wakefulness levels in response to emotional factors. The diversity of emotional factors that modulates sleep-wake levels suggests that the ascending arousal network may be intimately linked with networks that mediate mood. Indeed, while animal studies have identified select limbic structures that play a role in sleep-wake regulation, the breadth of corticolimbic structures that directly modulates arousal in humans remains unknown. OBJECTIVE: We investigated whether select regional activation of the corticolimbic network through direct electrical stimulation can modulate sleep-wake levels in humans, as measured by subjective experience and behavior. METHODS: We performed intensive inpatient stimulation mapping in two human participants with treatment resistant depression, who underwent intracranial implantation with multi-site, bilateral depth electrodes. Stimulation responses of sleep-wake levels were measured by subjective surveys (i.e. Stanford Sleepiness Scale and visual-analog scale of energy) and a behavioral arousal score. Biomarker analyses of sleep-wake levels were performed by assessing spectral power features of resting-state electrophysiology. RESULTS: Our findings demonstrated three regions whereby direct stimulation modulated arousal, including the orbitofrontal cortex (OFC), subgenual cingulate (SGC), and, most robustly, ventral capsule (VC). Modulation of sleep-wake levels was frequency-specific: 100Hz OFC, SGC, and VC stimulation promoted wakefulness, whereas 1Hz OFC stimulation increased sleepiness. Sleep-wake levels were correlated with gamma activity across broad brain regions. CONCLUSIONS: Our findings provide evidence for the overlapping circuitry between arousal and mood regulation in humans. Furthermore, our findings open the door to new treatment targets and the consideration of therapeutic neurostimulation for sleep-wake disorders.


Asunto(s)
Nivel de Alerta , Somnolencia , Animales , Humanos , Nivel de Alerta/fisiología , Sueño/fisiología , Vigilia/fisiología , Estimulación Eléctrica
2.
Neuron ; 109(19): 3149-3163.e6, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34450026

RESUMEN

Executing memory-guided behavior requires storage of information about experience and later recall of that information to inform choices. Awake hippocampal replay, when hippocampal neural ensembles briefly reactivate a representation related to prior experience, has been proposed to critically contribute to these memory-related processes. However, it remains unclear whether awake replay contributes to memory function by promoting the storage of past experiences, facilitating planning based on evaluation of those experiences, or both. We designed a dynamic spatial task that promotes replay before a memory-based choice and assessed how the content of replay related to past and future behavior. We found that replay content was decoupled from subsequent choice and instead was enriched for representations of previously rewarded locations and places that had not been visited recently, indicating a role in memory storage rather than in directly guiding subsequent behavior.


Asunto(s)
Conducta de Elección/fisiología , Hipocampo/fisiología , Memoria/fisiología , Percepción Espacial/fisiología , Algoritmos , Animales , Condicionamiento Operante , Electrodos Implantados , Objetivos , Modelos Lineales , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Long-Evans
3.
Sci Rep ; 10(1): 20851, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257721

RESUMEN

Anatomic evaluation is an important aspect of many studies in neuroscience; however, it often lacks information about the three-dimensional structure of the brain. Micro-CT imaging provides an excellent, nondestructive, method for the evaluation of brain structure, but current applications to neurophysiological or lesion studies require removal of the skull as well as hazardous chemicals, dehydration, or embedding, limiting their scalability and utility. Here we present a protocol using eosin in combination with bone decalcification to enhance contrast in the tissue and then employ monochromatic and propagation phase-contrast micro-CT imaging to enable the imaging of brain structure with the preservation of the surrounding skull. Instead of relying on descriptive, time-consuming, or subjective methods, we develop simple quantitative analyses to map the locations of recording electrodes and to characterize the presence and extent of hippocampal brain lesions.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Microtomografía por Rayos X/métodos , Animales , Eosina Amarillenta-(YS)/farmacología , Hipocampo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Masculino , Prótesis e Implantes , Ratas , Ratas Long-Evans , Cráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA