Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 229(1): 259-271, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32772392

RESUMEN

Root exudation stimulates microbial decomposition and enhances nutrient availability to plants. It remains difficult to measure and predict this carbon flux in natural conditions, especially for mature woody plants. Based on a known conceptual framework of root functional traits coordination, we proposed that root functional traits may predict root exudation. We measured root exudation and other seven root morphological/chemical/physiological traits for 18 coexisting woody species in a deciduous-evergreen mixed forest in subtropical China. Root exudation, respiration, diameter and nitrogen (N) concentration all exhibited significant phylogenetic signals. We found that root exudation positively correlated with competitive traits (root respiration, N concentration) and negatively with a conservative trait (root tissue density). Furthermore, these relationships were independent of phylogenetic signals. A principal component analysis showed that root exudation and morphological traits loaded on two perpendicular axes. Root exudation is a competitive trait in a multidimensional fine-root functional coordination. The metabolic dimension on which root exudation loaded was relatively independent of the morphological dimension, indicating that increasing nutrient availability by root exudation might be a complementary strategy for plant nutrient acquisition. The positive relationship between root exudation and root respiration and N concentration is a promising approach for the future prediction of root exudation.


Asunto(s)
Bosques , Raíces de Plantas , China , Nitrógeno , Filogenia
2.
Glob Chang Biol ; 26(12): 7268-7283, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33026137

RESUMEN

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.


Asunto(s)
Gases de Efecto Invernadero , Atmósfera , Dióxido de Carbono/análisis , Ecosistema , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Reproducibilidad de los Resultados , Respiración , Suelo
3.
PLoS One ; 17(3): e0266131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35324979

RESUMEN

Exudation by fine roots generally varies with their morphological traits, but the effect of belowground resource availability on the root exudation via root morphological traits and biomass remains unknown. We aimed to determine the effects of morphological and physiological traits on root exudation rates and to estimate stand-scale exudation (Estand) by measuring the mass, length, and surface area of fine roots in a Moso bamboo forest. We measured root exudation as well as morphological and physiological traits in upper and lower plots on a slope with different belowground resource availability. The mean (± S.D.) root exudation rates per mass in the upper and lower slope were 0.049 ± 0.047 and 0.040 ± 0.059 mg C g-1 h-1, respectively, which were in the range of exudation found in woody forest ecosystems. We observed significant relationships between root exudation per mass and root respiration, as well as specific root length and surface area. In contrast, exudation per length and area did not correlate with morphological traits. The morphological traits did not differ between slope positions, resulting in no significant difference in root exudation per mass. Fine root biomass, length, and surface area on a unit ground basis were much higher in the lower than those in the upper slope positions. Estand was higher when estimated by mass than by length and area because the morphological effect on exudation was ignored when scaled using mass. Estand was 1.4-2.0-fold higher in the lower than that in upper slope positions, suggesting that the scaling parameters of mass, length, and area determined the Estand estimate more than the exudation rate per mass, length, and area. Regardless of scaling, Estand was much higher in the Moso bamboo forest than in other forest ecosystems because of a large fine-root biomass.


Asunto(s)
Ecosistema , Raíces de Plantas , Biomasa , Bosques , Raíces de Plantas/fisiología , Poaceae , Suelo
4.
Tree Physiol ; 40(3): 367-376, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31976533

RESUMEN

In forest ecosystems, fine root respiration directly contributes to belowground carbon (C) cycling. Exudation from fine roots indirectly affects C cycling via enhanced microbial decomposition of soil organic matter. Although these root-derived C fluxes are essential components of belowground C cycling, how nitrogen (N) addition affects these fluxes and their correlations remains unclear. In this study, fine root exudation, respiration and chemical/morphological traits were measured in a dominant canopy species, Quercus crispula Blume, found in a cool temperate forest, the Tomakomai Experimental Forest, Hokkaido University, which has undergone 5-year N addition. Soil-dissolved organic carbon (DOC) was also measured in both bulk and rhizosphere soils to evaluate the impact of fine root exudation on soil C cycling. Compared with a control plot with no N treatment, fine roots in the N addition plot exhibited larger diameters and higher N concentrations, but lower specific root lengths and areas. On a root-weight basis, respiration was not different between plots, but exudation was slightly higher under N addition. On a root-area basis, exudation was significantly higher in the N addition plot. Additionally, differences in DOC between rhizosphere and bulk soils were two times higher in the N addition plot than the control plot. Although fine root respiration was positively correlated with exudation in both the control and N addition plots, the ratio of exudation C to respiration C decreased after 5-year N addition. Nitrogen addition also affected absolute C allocation to fine root exudation and changed the C allocation strategy between exudation and respiration fluxes. These findings will help enhance predictions of belowground C allocation and C cycling under N-rich conditions in the future.


Asunto(s)
Quercus , Carbono , Ecosistema , Bosques , Japón , Nitrógeno/análisis , Raíces de Plantas/química , Suelo
5.
Tree Physiol ; 37(8): 1011-1020, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338964

RESUMEN

Plants allocate a considerable amount of carbon (C) to fine roots as respiration and exudation. Fine-root exudation could stimulate microbial activity, which further contributes to soil heterotrophic respiration. Although both root respiration and exudation are important components of belowground C cycling, how they relate to each other is less well known. In this study, we aimed to explore this relationship on mature trees growing in the field. The measurements were performed on two canopy species, Quercus serrata Thunb. and Quercus glauca, in a warm temperate forest. The respiration and exudation rates of the same fine-root segment were measured in parallel with a syringe-basis incubation and a closed static chamber, respectively. We also measured root traits and ectomycorrhizal colonization ratio because these indexes commonly relate to root respiration and reflect root physiology. The microbial activity enhanced by root exudation was investigated by comparing the dissolved organic carbon (DOC) and microbial biomass carbon (MBC) between rhizosphere soils and bulk soils. Mean DOC concentration and MBC were ca two times higher in the rhizosphere soils and positively related to exudation rates, indicating that exudation further relates to the C dynamics in the soils. Flux rates of exudation and respiration were positively correlated with each other. Both root exudation and respiration rates positively related to ectomycorrhizal colonization and root tissue nitrogen, and therefore the relationship between the two fluxes may be attributed to fine-root activity. The flux rates of root respiration were 8.7 and 10.5 times as much as those of exudation on a root-length basis and a root-weight basis, respectively. In spite of the fact that flux rates of respiration and exudation varied enormously among the fine-root segments of the two Quercus species, exudation was in proportion to respiration. This result gives new insight into the fine-root C-allocation strategy and the belowground C dynamics.


Asunto(s)
Ciclo del Carbono , Raíces de Plantas/fisiología , Quercus/fisiología , Bosques , Japón , Exudados de Plantas/análisis , Rizosfera , Suelo/química , Microbiología del Suelo , Árboles
6.
PLoS One ; 9(10): e108404, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25271761

RESUMEN

We performed continuous and manual in situ measurements of CO2 efflux from the leaf litter layer (R(LL)) and water content of the leaf litter layer (LWC) in conjunction with measurements of soil respiration (RS) and soil water content (SWC) in a temperate forest; our objectives were to evaluate the response of R(LL) to rainfall events and to assess temporal variation in its contribution to R(S). We measured R(LL) in a treatment area from which all potential sources of CO2 except for the leaf litter layer were removed. Capacitance sensors were used to measure LWC. R(LL) increased immediately after wetting of the leaf litter layer; peak R(LL) values were observed during or one day after rainfall events and were up to 8.6-fold larger than R(LL) prior to rainfall. R(LL) declined to pre-wetting levels within 2-4 day after rainfall events and corresponded to decreasing LWC, indicating that annual R(LL) is strongly influenced by precipitation. Temporal variation in the observed contribution of R(LL) to RS varied from nearly zero to 51%. Continuous in situ measurements of LWC and CO2 efflux from leaf litter only, combined with measurements of RS, can provide robust data to clarify the response of R(LL) to rainfall events and its contribution to total R(S).


Asunto(s)
Dióxido de Carbono/metabolismo , Hojas de la Planta/metabolismo , Respiración de la Célula , Clima , Ecosistema , Bosques , Estaciones del Año , Suelo/química , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA